604 research outputs found

    A Study of Methods for the Determination of Reducing Sugar in Bacteriological Media II

    Get PDF
    Previous work of Magee and Smith has shown that the determination of reducing substances in beef-broth media by the Shaffer-Hartman micro method, following clarification with lead sub-acetate, gives results that are extremely variable. It was found impossible to completely recover known quantities of glucose added to the medium

    Prospectus, March 8, 2000

    Get PDF
    https://spark.parkland.edu/prospectus_2000/1008/thumbnail.jp

    An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model

    Get PDF
    An empirical model for the temperature of subsurface water entrained into the ocean mixed layer (Te) is presented and evaluated to improve sea surface temperature anomaly (SSTA) simulations in an intermediate ocean model (IOM) of the tropical Pacific. An inverse modeling approach is adopted to estimate Te from an SSTA equation using observed SST and simulated upper-ocean currents. A relationship between Te and sea surface height (SSH) anomalies is then obtained by utilizing a singular value decomposition (SVD) of their covariance. This empirical scheme is able to better parameterize Te anomalies than other local schemes and quite realistically depicts interannual variability of Te, including a nonlocal phase lag relation of Te variations relative to SSH anomalies over the central equatorial Pacific. An improved Te parameterization naturally leads to better depiction of the subsurface effect on SST variability by the mean upwelling of subsurface temperature anomalies. As a result, SSTA simulations are significantly improved in the equatorial Pacific; a comparison with other schemes indicates that systematic errors of the simulated SSTAs are significantly small—apparently due to the optimized empirical Teparameterization. Cross validation and comparisons with other model simulations are made to illustrate the robustness and effectiveness of the scheme. In particular it is demonstrated that the empirical Te model constructed from one historical period can be successfully used to improve SSTA simulations in another

    Blockade of nucleus accumbens 5-HT2A and 5-HT2C receptors prevents the expression of cocaine-induced behavioral and neurochemical sensitization in rats

    Get PDF
    The serotonin 5-HT2A and 5-HT2C receptors regulate the capacity of acute cocaine to augment behavior and monoamine levels within the nucleus accumbens (NAC), a brain region involved in cocaine’s addictive and psychotogenic properties. In the present study, we tested the hypothesis that NAC 5-HT2A and 5-HT2C receptor activation is involved in the expression of cocaine-induced neuroplasticity following protracted withdrawal from a sensitizing repeated cocaine regimen (days 1 and 7, 15 mg/kg; days 2–6, 30 mg/kg, i.p.). The effects of intra-NAC infusions of the 5-HT2A antagonist R-(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine methanol (MDL 100907; 0, 50, 100, 500 nM) or the 5-HT2C antagonist [6-chloro-5-methyl-1-(6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] inodoline dihydrochloride (SB 242084; 0, 50, 100, 500 nM) were first assessed upon the expression of locomotor activity elicited by a 15-mg/kg cocaine challenge injection administered at 3-week withdrawal. A follow-up in vivo microdialysis experiment then compared the effects of the local perfusion of 0, 50, or 100 nM of each antagonist upon cocaine-induced dopamine and glutamate sensitization in the NAC. Although neither MDL 100907 nor SB 242084 altered acute cocaine-induced locomotion, SB 242084 reduced acute cocaine-elevated NAC dopamine and glutamate levels. Intra-NAC perfusion with either compound blocked the expression of cocaine-induced locomotor and glutamate sensitization, but only MDL 100907 pretreatment prevented the expression of cocaine-induced dopamine sensitization. These data provide the first evidence that NAC 5-HT2A and 5-HT2C receptors are critical for the expression of cocaine-induced neuroplasticity following protracted withdrawal, which has relevance for their therapeutic utility in the treatment of addiction

    Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy

    Get PDF
    AbstractLower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p=0.01) but were unchanged in controls (p=0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p<0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p=0.007 and p=0.001, respectively). Longitudinal increases in WMH (rs=0.04, p=0.86) or cerebral microbleeds (rs=−0.18, p=0.45) were not associated with the longitudinal decrease in BOLD amplitudes

    A rapid turnaround gene panel for severe autoinflammation: Genetic results within 48 hours

    Get PDF
    There is an important unmet clinical need for fast turnaround next generation sequencing (NGS) to aid genetic diagnosis of patients with acute and sometimes catastrophic inflammatory presentations. This is imperative for patients who require precise and targeted treatment to prevent irreparable organ damage or even death. Acute and severe hyper- inflammation may be caused by primary immunodeficiency (PID) with immune dysregulation, or more typical autoinflammatory diseases in the absence of obvious immunodeficiency. Infectious triggers may be present in either immunodeficiency or autoinflammation. We compiled a list of 25 genes causing monogenetic immunological diseases that are notorious for their acute first presentation with fulminant inflammation and which may be amenable to specific treatment, including hemophagocytic lymphohistiocytosis (HLH); and autoinflammatory diseases that can present with early-onset stroke or other irreversible neurological inflammatory complications. We designed and validated a pipeline that enabled return of clinically actionable results in hours rather than weeks: the Rapid Autoinflammation Panel (RAP). We demonstrated accuracy of this new pipeline, with 100% sensitivity and 100% specificity. Return of results to clinicians was achieved within 48-hours from receiving the patient's blood or saliva sample. This approach demonstrates the potential significant diagnostic impact of NGS in acute medicine to facilitate precision medicine and save "life or limb" in these critical situations

    Retrospective El Niño hindcasts/forecasts using an improved intermediate coupled model

    Get PDF
    A new intermediate coupled model (ICM) is presented and employed to make retrospective predictions of tropical Pacific sea surface temperature (SST) anomalies. The ocean dynamics is an extension of the McCreary baroclinic modal model to include varying stratification and certain nonlinear effects. A standard configuration is chosen with 10 baroclinic modes plus two surface layers, which are governed by Ekman dynamics and simulate the combined effects of the higher baroclinic modes from 11 to 30. A nonlinear correction associated with vertical advection of zonal momentum is incorporated and applied (diagnostically) only within the two surface layers, forced by the linear part through nonlinear advection terms. As a result of these improvements, the model realistically simulates the mean equatorial circulation and its variability. The ocean thermodynamics include an SST anomaly model with an empirical parameterization for the temperature of subsurface water entrained into the mixed layer (Te), which is optimally calculated in terms of sea surface height (SSH) anomalies using an empirical orthogonal function (EOF) analysis technique from historical data. The ocean model is then coupled to a statistical atmospheric model that estimates wind stress (τ) anomalies based on a singular value decomposition (SVD) analysis between SST anomalies observed and τ anomalies simulated from ECHAM4.5 (24-member ensemble mean). The coupled system exhibits realistic interannual variability associated with El Niño, including a predominant standing pattern of SST anomalies along the equator and coherent phase relationships among different atmosphere–ocean anomaly fields with a dominant 3-yr oscillation period. Twelve-month hindcasts/forecasts are made during the period 1963–2002, starting each month. Only observed SST anomalies are used to initialize the coupled predictions. As compared to other prediction systems, this coupled model has relatively small systematic errors in the predicted SST anomalies, and its SST prediction skill is apparently competitive with that of most advanced coupled systems incorporating sophisticated ocean data assimilation. One striking feature is that the model skill surpasses that of persistence at all lead times over the central equatorial Pacific. Prediction skill is strongly dependent on the season, with the correlations attaining a minimum in spring and a maximum in fall. Cross-validation experiments are performed to examine the sensitivity of the prediction skill to the data periods selected for training the empirical Te model. It is demonstrated that the artificial skill introduced by using a dependently constructed Te model is not significant. Independent forecasts are made for the period 1997–2002 when no dependent data are included in constructing the two empirical models (Te and τ). The coupled model has reasonable success in predicting transition to warm phase and to cold phase in the spring of 1997 and 1998, respectively. Potential problems and further improvements are discussed with the new intermediate prediction system

    Proximity-enhanced valley Zeeman splitting at the WS2_2/graphene interface

    Full text link
    The valley Zeeman physics of excitons in monolayer transition metal dichalcogenides provides valuable insight into the spin and orbital degrees of freedom inherent to these materials. Being atomically-thin materials, these degrees of freedom can be influenced by the presence of adjacent layers, due to proximity interactions that arise from wave function overlap across the 2D interface. Here, we report 60 T magnetoreflection spectroscopy of the A- and B- excitons in monolayer WS2_2, systematically encapsulated in monolayer graphene. While the observed variations of the valley Zeeman effect for the A- exciton are qualitatively in accord with expectations from the bandgap reduction and modification of the exciton binding energy due to the graphene-induced dielectric screening, the valley Zeeman effect for the B- exciton behaves markedly different. We investigate prototypical WS2_2/graphene stacks employing first-principles calculations and find that the lower conduction band of WS2_2 at the K/K′K/K' valleys (the CB−CB^- band) is strongly influenced by the graphene layer on the orbital level. This leads to variations in the valley Zeeman physics of the B- exciton, consistent with the experimental observations. Our detailed microscopic analysis reveals that the conduction band at the QQ point of WS2_2 mediates the coupling between CB−CB^- and graphene due to resonant energy conditions and strong coupling to the Dirac cone. Our results therefore expand the consequences of proximity effects in multilayer semiconductor stacks, showing that wave function hybridization can be a multi-step process with different bands mediating the interlayer interactions. Such effects can be exploited to resonantly engineer the spin-valley degrees of freedom in van der Waals and moir\'e heterostructures.Comment: 14 pages, 6 figures, 3 table
    • …
    corecore