595 research outputs found

    ALMA Observations of Supernova 1987A

    Get PDF
    Supernova (SN) 1987A has provided a unique opportunity to study how SN ejecta evolve in 30 years time scale. We report our ALMA spectral observations of SN 1987A, taken in 2014, 2015 and 2016, with detections of CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO. We find a dip in the SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities causes mixing of gas, with heavier elements much more disturbed, making more elongated structure. Using 28SiO and its isotopologues, Si isotope ratios were estimated for the first time in SN 1987A. The estimated ratios appear to be consistent with theoretical predictions of inefficient formation of neutron rich atoms at lower metallicity, such as observed in the Large Magellanic Cloud (about half a solar metallicity). The deduced large HCO+ mass and small SiS mass, which are inconsistent to the predictions of chemical model, might be explained by some mixing of elements immediately after the explosion. The mixing might have made some hydrogen from the envelope to sink into carbon and oxygen-rich zone during early days after the explosion, enabling the formation of a substantial mass of HCO+. Oxygen atoms may penetrate into silicon and sulphur zone, suppressing formation of SiS. Our ALMA observations open up a new window to investigate chemistry, dynamics and explosive-nucleosynthesis in supernovae

    Observing Supernova 1987A with the Refurbished Hubble Space Telescope

    Get PDF
    Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 using the refurbished instruments on HST with data taken in 2004, just before the Space Telescope Imaging Spectrograph failed, we find that the Ly-a and H-a lines from shock emission continue to brighten, while their maximum velocities continue to decrease. We observe broad blueshifted Ly-a, which we attribute to resonant scattering of photons emitted from hotspots on the equatorial ring. We also detect NV~\lambda\lambda 1239,1243 A line emission, but only to the red of Ly-A. The profiles of the NV lines differ markedly from that of H-a, suggesting that the N^{4+} ions are scattered and accelerated by turbulent electromagnetic fields that isotropize the ions in the collisionless shock.Comment: Science, accepted. Science Express, 02 Sept 2010. 5 figures. Supporting online material can be found at http://www.sciencemag.org/cgi/content/full/sci;science.1192134/DC

    Magnetic Flux Expulsion in the Powerful Superbubble Explosions and the Alpha-Omega Dynamo

    Full text link
    The possibility of the magnetic flux expulsion from the Galaxy in the superbubble (SB) explosions, important for the Alpha-Omega dynamo, is considered. Special emphasis is put on the investigation of the downsliding of the matter from the top of the shell formed by the SB explosion which is able to influence the kinematics of the shell. It is shown that either Galactic gravity or the development of the Rayleigh-Taylor instabilities in the shell limit the SB expansion, thus, making impossible magnetic flux expulsion. The effect of the cosmic rays in the shell on the sliding is considered and it is shown that it is negligible compared to Galactic gravity. Thus, the question of possible mechanism of flux expulsion in the Alpha-Omega dynamo remains open.Comment: MNRAS, in press, 11 pages, 9 figure

    Preliminary Spectral Analysis of the Type II Supernova 1999em

    Get PDF
    We have calculated fast direct spectral model fits to two early-time spectra of the Type-II plateau SN 1999em, using the SYNOW synthetic spectrum code. The first is an extremely early blue optical spectrum and the second a combined HST and optical spectrum obtained one week later. Spectroscopically this supernova appears to be a normal Type II and these fits are in excellent agreement with the observed spectra. Our direct analysis suggests the presence of enhanced nitrogen. We have further studied these spectra with the full NLTE general model atmosphere code PHOENIX. While we do not find confirmation for enhanced nitrogen (nor do we rule it out), we do require enhanced helium. An even more intriguing possible line identification is complicated Balmer and He I lines, which we show falls naturally out of the detailed calculations with a shallow density gradient. We also show that very early spectra such as those presented here combined with sophisticated spectral modeling allows an independent estimate of the total reddening to the supernova, since when the spectrum is very blue, dereddening leads to changes in the blue flux that cannot be reproduced by altering the ``temperature'' of the emitted radiation. These results are extremely encouraging since they imply that detailed modeling of early spectra can shed light on both the abundances and total extinction of SNe II, the latter improving their utility and reliability as distance indicators.Comment: to appear in ApJ, 2000, 54

    Analysis of the Type IIn Supernova 1998S: Effects of Circumstellar Interaction on Observed Spectra

    Get PDF
    We present spectral analysis of early observations of the Type IIn supernova 1998S using the general non-local thermodynamic equilibrium atmosphere code \tt PHOENIX}. We model both the underlying supernova spectrum and the overlying circumstellar interaction region and produce spectra in good agreement with observations. The early spectra are well fit by lines produced primarily in the circumstellar region itself, and later spectra are due primarily to the supernova ejecta. Intermediate spectra are affected by both regions. A mass-loss rate of order M˙0.00010.001\dot M \sim 0.0001-0.001\msol yr1^{-1} is inferred for a wind speed of 100-1000 \kmps. We discuss how future self-consistent models will better clarify the underlying progenitor structure.Comment: to appear in ApJ, 2001, 54

    An adjustable law of motion for relativistic spherical shells

    Full text link
    A classical and a relativistic law of motion for an advancing shell are deduced applying the thin layer approximation. A new parameter connected with the quantity of absorbed matter in the expansion is introduced; this allows of matching theory and observation.Comment: 15 pages, 10 figures and article in press; Central European Journal of Physics 201

    Alignment of the UMLS semantic network with BioTop: Methodology and assessment

    Get PDF
    Motivation: For many years, the Unified Medical Language System (UMLS) semantic network (SN) has been used as an upper-level semantic framework for the categorization of terms from terminological resources in biomedicine. BioTop has recently been developed as an upper-level ontology for the biomedical domain. In contrast to the SN, it is founded upon strict ontological principles, using OWL DL as a formal representation language, which has become standard in the semantic Web. In order to make logic-based reasoning available for the resources annotated or categorized with the SN, a mapping ontology was developed aligning the SN with BioTop. Methods: The theoretical foundations and the practical realization of the alignment are being described, with a focus on the design decisions taken, the problems encountered and the adaptations of BioTop that became necessary. For evaluation purposes, UMLS concept pairs obtained from MEDLINE abstracts by a named entity recognition system were tested for possible semantic relationships. Furthermore, all semantic-type combinations that occur in the UMLS Metathesaurus were checked for satisfiability. Results: The effort-intensive alignment process required major design changes and enhancements of BioTop and brought up s

    On the Absorption of X-rays in the Interstellar Medium

    Full text link
    We present an improved model for the absorption of X-rays in the ISM intended for use with data from future X-ray missions with larger effective areas and increased energy resolution such as Chandra and XMM, in the energy range above 100eV. Compared to previous work, our formalism includes recent updates to the photoionization cross section and revised abundances of the interstellar medium, as well as a treatment of interstellar grains and the H2molecule. We review the theoretical and observational motivations behind these updates and provide a subroutine for the X-ray spectral analysis program XSPEC that incorporates our model.Comment: ApJ, in press, for associated software see http://astro.uni-tuebingen.de/nh

    GS305+04-26:Revisiting the ISM around the CenOB1 stellar association

    Get PDF
    Massive stars deeply modify their surrounding ISM via their high throughput of ionizing photons and their strong stellar winds. In this way they may create large expanding structures of neutral gas. We study a new large HI shell, labelled GS305+04-26, and its relationship with the OB association CenOB1. To carry out this study we have used a multi-wavelenght approach. We analyze neutral hydrogen (HI) line data retrieved from the Leiden-Argentina-Bonn (LAB) survey, new spectroscopic optical observations obtained at CASLEO, and make use of proper motion databases available via Internet. The analysis of the HI data reveals a large expanding structure GS305+04-26 centered at (l,b)=(305^{\degr}, +4^{\degr}) in the velocity range from -33 to -17 km/s. Based on its central velocity, -26 km/s, and using standard galactic rotation models, a distance of 2.5(+-)0.9 kpc is inferred. This structure, elliptical in shape, has major and minor axis of 440 and 270 pc, respectively. Its expansion velocity, total gaseous mass, and kinetic energy are ~8 km/s, (2.4(+-)0.5)x10^5 Mo, and (1.6(+-)0.4)x10^{50} erg, respectively. Several stars of the OB-association CenOB1 are seen projected onto, and within, the boundaries of GS305+04-26. Based on an analysis of proper motions, new members of CenOB1 are identified. The mechanical energy injected by these stars could have been the origin of this HI structure.Comment: 14 pages, 6 figures, A&A (in press

    Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    Get PDF
    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450um, 870um, 1.4mm, and 2.8mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2Msun). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated to the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.Comment: ApJL accepte
    corecore