314 research outputs found

    Clustered Intracellular Salmonella enterica Serovar Typhimurium blocks host cell cytokinesis

    Get PDF
    Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S. Typhimurium delays epithelial cell turnover in the intestine

    Cross Section Measurements of Charged Pion Photoproduction in Hydrogen and Deuterium from 1.1 to 5.5 GeV

    Get PDF
    The differential cross section for the gamma +n --> pi- + p and the gamma + p --> pi+ n processes were measured at Jefferson Lab. The photon energies ranged from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4 GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The pi- and pi+ photoproduction data both exhibit a global scaling behavior at high energies and high transverse momenta, consistent with the constituent counting rule prediction and the existing pi+ data. The data suggest possible substructure of the scaling behavior, which might be oscillations around the scaling value. The data show an enhancement in the scaled cross section at center-of-mass energy near 2.2 GeV. The differential cross section ratios at high energies and high transverse momenta can be described by calculations based on one-hard-gluon-exchange diagrams.Comment: 18 pages, 19 figure

    Probing the high momentum component of the deuteron at high Q^2

    Full text link
    The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle theta_nq and to extract missing momentum distributions for fixed values of theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg) recent calculations, which predict that final state interactions are small, agree reasonably well with the experimental data. Therefore these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electro-disintegration.Comment: 5 pages, 2 figure

    Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime

    Full text link
    We present measurements of the ep->ep pi^0 cross section extracted at two values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson Lab Hall A. The kinematic range allows to study the evolution of the extracted hadronic tensor as a function of Q^2 and W. Results will be confronted with Regge inspired calculations and GPD predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering has also been attempted

    Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2

    Get PDF
    We report the most precise measurement to date of a parity-violating asymmetry in elastic electron-proton scattering. The measurement was carried out with a beam energy of 3.03 GeV and a scattering angle =6 degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/- 0.012 (FF) where the first two errors are experimental and the last error is due to the uncertainty in the neutron electromagnetic form factor. This result significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2. A consistent picture emerges when several measurements at about the same Q^2 value are combined: G_E^s is consistent with zero while G_M^s prefers positive values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one figure to improve focu

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Nuclear transparency with the γn⃗π-p process in 4He

    Get PDF
    We have measured the nuclear transparency of the fundamental process γn⃗π-p in 4He. These measurements were performed at Jefferson Lab in the photon energy range of 1.6–4.5 GeV and at θcmπ=70° and 90°. These measurements are the first of their kind in the study of nuclear transparency in photoreactions. They also provide a benchmark test of Glauber calculations based on traditional models of nuclear physics. The transparency results suggest deviations from the traditional nuclear physics picture. The momentum transfer dependence of the measured nuclear transparency is consistent with Glauber calculations that include the quantum chromodynamics phenomenon of color transparency

    Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic 3He(e,e′) at Q2=0.3 to 0.6 (GeV/c)2

    Get PDF
    A high precision measurement of the transverse spin-dependent asymmetry AT′ in 3He(e,e′) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q2, between 0.1 and 0.6 (GeV/c)2. AT′ is sensitive to the neutron magnetic form factor, GMn. Values of GMn at Q2=0.1 and 0.2 (GeV/c)2, extracted using Faddeev calculations, were reported previously. Here, we report the extraction of GMn for the remaining Q2 values in the range from 0.3 to 0.6 (GeV/c)2 using a plane-wave impulse approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target

    Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic 3He(e,e′) at Q2=0.3 to 0.6 (GeV/c)2

    Get PDF
    A high precision measurement of the transverse spin-dependent asymmetry AT′ in 3He(e,e′) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q2, between 0.1 and 0.6 (GeV/c)2. AT′ is sensitive to the neutron magnetic form factor, GMn. Values of GMn at Q2=0.1 and 0.2 (GeV/c)2, extracted using Faddeev calculations, were reported previously. Here, we report the extraction of GMn for the remaining Q2 values in the range from 0.3 to 0.6 (GeV/c)2 using a plane-wave impulse approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target

    Extraction of the Neutron Magnetic Form Factor from Quasi-Elastic 3He(pol)(e(pol),e') at Q^2 = 0.1 - 0.6 (GeV/c)^2

    Get PDF
    We have measured the spin-dependent transverse asymmetry, A_T', in quasi-elastic inclusive electron scattering from polarized 3He with high precision at Q^2 = 0.1 to 0.6 (GeV/c)^2. The neutron magnetic form factor, GMn, was extracted at Q^2 = 0.1 and 0.2 (GeV/c)^2 using a non-relativistic Faddeev calculation that includes both final-state interactions (FSI) and meson-exchange currents (MEC). In addition, GMn was extracted at Q^2 = 0.3 to 0.6 (GeV/c)^2 using a Plane Wave Impulse Approximation calculation. The accuracy of the modeling of FSI and MEC effects was tested and confirmed with a precision measurement of the spin-dependent asymmetry in the breakup threshold region of the 3He(pol)(e(pol),e') reaction. The total relative uncertainty of the extracted GMn data is approximately 3%. Close agreement was found with other recent high-precision GMn data in this Q^2 range.Comment: Archival paper, 17 pages, 10 figures, 5 tables, submitted to Physical Review C. v2: shortened considerably, updated comparison to theor
    corecore