398 research outputs found

    LRG-BEASTS III: Ground-based transmission spectrum of the gas giant orbiting the cool dwarf WASP-80

    Full text link
    We have performed ground-based transmission spectroscopy of the hot Jupiter orbiting the cool dwarf WASP-80 using the ACAM instrument on the William Herschel Telescope (WHT) as part of the LRG-BEASTS programme. This is the third paper of a ground-based transmission spectroscopy survey of hot Jupiters using low-resolution grism spectrographs. We observed two transits of the planet and have constructed transmission spectra spanning a wavelength range of 4640-8840A. Our transmission spectrum is inconsistent with a previously claimed detection of potassium in WASP-80b's atmosphere, and is instead most consistent with a haze. We also do not see evidence for sodium absorption at a resolution of 100A.Comment: 11 pages, 9 figures. Accepted for publication in MNRA

    Rayleigh scattering in the transmission spectrum of HAT-P-18b

    Get PDF
    We have performed ground-based transmission spectroscopy of the hot Jupiter HAT-P-18b using the ACAM instrument on the William Herschel Telescope (WHT). Differential spectroscopy over an entire night was carried out at a resolution of R400R \approx 400 using a nearby comparison star. We detect a bluewards slope extending across our optical transmission spectrum which runs from 4750 to 9250\AA. The slope is consistent with Rayleigh scattering at the equilibrium temperature of the planet (852K). We do not detect enhanced sodium absorption, which indicates that a high-altitude haze is masking the feature and giving rise to the Rayleigh slope. This is only the second discovery of a Rayleigh scattering slope in a hot Jupiter atmosphere from the ground, and our study illustrates how ground-based observations can provide transmission spectra with precision comparable to the Hubble Space Telescope.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    The effect of particle size distribution on froth stability in flotation

    Get PDF
    Separation of particles of different surface properties using froth flotation is a widely-used industrial process, particularly in the minerals industry where it is used to concentrate minerals from ore. One of the key challenges in developing models to predict flotation performance is the interdependent nature of the process variables and operating parameters, which limits the application of optimising process control strategies at industrial scale. Froth stability, which can be quantified using air recovery (the fraction of air entering a flotation cell that overflows in the concentrate as unburst bubbles), has been shown to be linked to flotation separation performance, with stable froths yielding improved mineral recoveries. While it is widely acknowledged that there is an optimum particle size range for collection of particles in the pulp phase, the role of particle size on the measured air recovery and the resulting link to changes in flotation performance is less well understood. This is related to the difficulty in separating particle size and liberation effects. In this work, the effects of particle size distribution on air recovery are studied in a single species (silica) system using a continuous steady-state laboratory flotation cell. This allows an investigation into the effects of particle size distribution only on froth stability, using solids content and solids recovery as indicators of flotation performance. It is shown that, as the cell air rate is increased, the air recovery of the silica system passes through a peak, exhibiting the same froth behaviour as measured industrially. The air recovery profiles of systems with three different particle size distributions (d80 of 89.6, 103.5 and 157.1 μm) are compared. The results show that, at lower air rates, the intermediate particle size distribution (103.5 μm) yields the most stable froth, while at higher air rates, the finest particles (89.6 μm) result in higher air recoveries. This is subsequently linked to changes in flotation performance. The results presented here highlight, for the first time, the link between particle size distribution in flotation feeds, air recovery and flotation performance. The results demonstrate that there is an optimal air rate for each particle size distribution, therefore changes in particle size distribution in the feed to flotation cells require a change in air rate in order to maximise mineral recovery

    K2 Variable Catalogue: Variable Stars and Eclipsing Binaries in K2 Campaigns 1 and 0

    Get PDF
    We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with periods up to 60d and 3871 periodic or quasi-periodic objects, with periods up to 20d for Campaign 1 and 15d for Campaign 0. Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. The resulting catalogue is made available online via the MAST archive at https://archive.stsci.edu/prepds/k2varcat/, and gives the ID, type, period, semi-amplitude and range of the variation seen. We also make available the detrended lightcurves for each object.Comment: Accepted by A&A. 6 pages, 6 figures. Catalogue and lightcurves are available online via MAST at https://archive.stsci.edu/prepds/k2varcat

    K2 Variable Catalogue II: Machine Learning Classification of Variable Stars and Eclipsing Binaries in K2 Fields 0-4

    Get PDF
    We are entering an era of unprecedented quantities of data from current and planned survey telescopes. To maximise the potential of such surveys, automated data analysis techniques are required. Here we implement a new methodology for variable star classification, through the combination of Kohonen Self Organising Maps (SOM, an unsupervised machine learning algorithm) and the more common Random Forest (RF) supervised machine learning technique. We apply this method to data from the K2 mission fields 0-4, finding 154 ab-type RR Lyraes (10 newly discovered), 377 Delta Scuti pulsators, 133 Gamma Doradus pulsators, 183 detached eclipsing binaries, 290 semi-detached or contact eclipsing binaries and 9399 other periodic (mostly spot-modulated) sources, once class significance cuts are taken into account. We present lightcurve features for all K2 stellar targets, including their three strongest detected frequencies, which can be used to study stellar rotation periods where the observed variability arises from spot modulation. The resulting catalogue of variable stars, classes, and associated data features are made available online. We publish our SOM code in Python as part of the open source PyMVPA package, which in combination with already available RF modules can be easily used to recreate the method.Comment: Accepted for publication in MNRAS, 16 pages, 13 figures. Updated with proof corrections. Full catalogue tables available at https://www2.warwick.ac.uk/fac/sci/physics/research/astro/people/armstrong/ or at the CD

    Configuration of the high‐latitude thermosphere neutral circulation for IMF B y negative and positive

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94946/1/grl2864.pd

    Subaru and Swift observations of V652 Herculis: resolving the photospheric pulsation

    Get PDF
    High-resolution spectroscopy with the Subaru High Dispersion Spectrograph, and Swift ultraviolet photometry are presented for the pulsating extreme helium star V652 Her. Swift provides the best relative ultraviolet photometry obtained to date, but shows no direct evidence for a shock at ultraviolet or X-ray wavelengths. Subaru has provided high spectral and high temporal resolution spectroscopy over six pulsation cycles (and eight radius minima). These data have enabled a line-by-line analysis of the entire pulsation cycle and provided a description of the pulsating photosphere as a function of optical depth. They show that the photosphere is compressed radially by a factor of at least 2 at minimum radius, that the phase of radius minimum is a function of optical depth and the pulse speed through the photosphere is between 141 and 239 km s−1 (depending how measured) and at least 10 times the local sound speed. The strong acceleration at minimum radius is demonstrated in individual line profiles; those formed deepest in the photosphere show a jump discontinuity of over 70 kms−1 on a time-scale of 150 s. The pulse speed and line profile jumps imply a shock is present at minimum radius. These empirical results provide input for hydrodynamical modelling of the pulsation and hydrodynamical plus radiative transfer modelling of the dynamical spectra

    MASCARA-2 b: A hot Jupiter transiting the mV=7.6m_V=7.6 A-star HD185603

    Get PDF
    In this paper we present MASCARA-2 b, a hot Jupiter transiting the mV=7.6m_V=7.6 A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million flux measurements of the star, corresponding to a total of almost 3000 hours of observations, revealing a periodic dimming in the flux with a depth of 1.3%1.3\%. Photometric follow-up observations were performed with the NITES and IAC80 telescopes and spectroscopic measurements were obtained with the Hertzsprung SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of 3.4741190.000006+0.000005 days3.474119^{+0.000005}_{-0.000006}~\rm{days} at a distance of 0.057±0.006 AU0.057 \pm 0.006~\rm{AU}, has a radius of 1.83±0.07 RJ1.83 \pm 0.07~\rm{R}_{\rm{J}} and place a 99%99\% upper limit on the mass of <17 MJ< 17~\rm{M}_{\rm{J}}. HD 185603 is a rapidly rotating early-type star with an effective temperature of 8980130+90 K8980^{+90}_{-130}~\rm{K} and a mass and radius of 1.890.05+0.06 M1.89^{+0.06}_{-0.05}~M_\odot, 1.60±0.06 R1.60 \pm 0.06~R_\odot, respectively. Contrary to most other hot Jupiters transiting early-type stars, the projected planet orbital axis and stellar spin axis are found to be aligned with λ=0.6±4\lambda=0.6 \pm 4^\circ. The brightness of the host star and the high equilibrium temperature, 2260±50 K2260 \pm 50~\rm{K}, of MASCARA-2 b make it a suitable target for atmospheric studies from the ground and space. Of particular interest is the detection of TiO, which has recently been detected in the similarly hot planets WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&

    Accessible digital ophthalmoscopy based on liquid-lens technology

    Get PDF
    Ophthalmoscopes have yet to capitalise on novel low-cost miniature optomechatronics, which could disrupt ophthalmic monitoring in rural areas. This paper demonstrates a new design integrating modern components for ophthalmoscopy. Simulations show that the optical elements can be reduced to just two lenses: an aspheric ophthalmoscopic lens and a commodity liquid-lens, leading to a compact prototype. Circularly polarised transpupilary illumination, with limited use so far for ophthalmoscopy, suppresses reflections, while autofocusing preserves image sharpness. Experiments with a human-eye model and cadaver porcine eyes demonstrate our prototype’s clinical value and its potential for accessible imaging when cost is a limiting factor
    corecore