793 research outputs found

    Hard x-ray polarimetry with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Get PDF
    Although designed primarily as a hard X-ray imager and spectrometer, the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is also capable of measuring the polarization of hard X-rays (20-100 keV) from solar flares. This capability arises from the inclusion of a small unobstructed Be scattering element that is strategically located within the cryostat that houses the array of nine germanium detectors. The Ge detectors are segmented, with both a front and rear active volume. Low energy photons (below about 100 keV) can reach a rear segment of a Ge detector only indirectly, by scattering. Low energy photons from the Sun have a direct path to the Be and have a high probability of Compton scattering into a rear segment of a Ge detector. The azimuthal distribution of these scattered photons carries with it a signature of the linear polarization of the incident flux. Sensitivity estimates, based on simulations and in-flight background measurements, indicate that a 20-100 keV polarization sensitivity of less than a few percent can be achieved for X-class flares

    Scalable loading of a two-dimensional trapped-ion array

    Get PDF
    Two-dimensional arrays of trapped-ion qubits are attractive platforms for scalable quantum information processing. Sufficiently rapid reloading capable of sustaining a large array, however, remains a significant challenge. Here with the use of a continuous flux of pre-cooled neutral atoms from a remotely located source, we achieve fast loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive two-dimensional arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux.Office of the Assistant Secretary of Defense for Research and Engineering (United States. Air Force. Contract FA8721-05-C-0002

    Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Get PDF
    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a NASA Small Explorer satellite designed to study hard x-ray and gamma-ray emission from solar flares. In addition, its high-resolution array of germanium detectors can see photons from high-energy sources throughout the Universe. Here we discuss the various algorithms necessary to extract spectra, lightcurves, and other information about cosmic gamma-ray bursts, pulsars, and other astrophysical phenomena using an unpointed, spinning array of detectors. We show some preliminary results and discuss our plans for future analyses. All RHESSI data are public, and scientists interested in participating should contact the principal author

    Comment on "Local accumulation times for source, diffusion, and degradation models in two and three dimensions" [J. Chem. Phys. 138, 104121 (2013)]

    Get PDF
    In a recent paper, Gordon, Muratov, and Shvartsman studied a partial differential equation (PDE) model describing radially symmetric diffusion and degradation in two and three dimensions. They paid particular attention to the local accumulation time (LAT), also known in the literature as the mean action time, which is a spatially dependent timescale that can be used to provide an estimate of the time required for the transient solution to effectively reach steady state. They presented exact results for three-dimensional applications and gave approximate results for the two-dimensional analogue. Here we make two generalizations of Gordon, Muratov, and Shvartsman’s work: (i) we present an exact expression for the LAT in any dimension and (ii) we present an exact expression for the variance of the distribution. The variance provides useful information regarding the spread about the mean that is not captured by the LAT. We conclude by describing further extensions of the model that were not considered by Gordon,Muratov, and Shvartsman. We have found that exact expressions for the LAT can also be derived for these important extensions..

    FiberGLAST: a scintillating fiber approach to the GLAST mission

    Get PDF
    FiberGLAST is a scintillating fiber gamma-ray detector designed for the GLAST mission. The system described below provides superior effective area and field of view for modest cost and risk. An overview of the FiberGLAST instrument is presented, as well as a more detailed description of the principle elements of the primary detector volume. The triggering and readout electronics are described, and Monte Carlo Simulations of the instrument performance are presented

    Evidence for multiple mechanisms underlying surface electric-field noise in ion traps

    Get PDF
    Electric-field noise from ion-trap electrode surfaces can limit the fidelity of multiqubit entangling operations in trapped-ion quantum information processors and can give rise to systematic errors in trapped-ion optical clocks. The underlying mechanism for this noise is unknown, but it has been shown that the noise amplitude can be reduced by energetic ion bombardment, or “ion milling,” of the trap electrode surfaces. Using a single trapped ⁸⁸Sr⁺ ion as a sensor, we investigate the temperature dependence of this noise both before and after ex situ ion milling of the trap electrodes. Making measurements over a trap electrode temperature range of 4 K to 295 K in both sputtered niobium and electroplated gold traps, we see a marked change in the temperature scaling of the electric-field noise after ion milling: power-law behavior in untreated surfaces is transformed to Arrhenius behavior after treatment. The temperature scaling becomes material-dependent after treatment as well, strongly suggesting that different noise mechanisms are at work before and after ion milling. To constrain potential noise mechanisms, we measure the frequency dependence of the electric-field noise, as well as its dependence on ion-electrode distance, for niobium traps at room temperature both before and after ion milling. These scalings are unchanged by ion milling.National Science Foundation (U.S.) (Award DMR-14-19807)United States. Air Force Office of Scientific Research (Contract FA8721-05-C-0002

    Chip-Integrated Voltage Sources for Control of Trapped Ions

    Get PDF
    Trapped-ion quantum-information processors offer many advantages for achieving high-fidelity operations on a large number of qubits, but current experiments require bulky external equipment for classical and quantum control of many ions. We demonstrate the cryogenic operation of an ion trap that incorporates monolithically integrated high-voltage complementary metal-oxide semiconductor (CMOS) electronics (±8V full swing) to generate surface-electrode control potentials without the need for external analog voltage sources. A serial bus programs an array of 16 digital-to-analog converters (DACs) within a single chip that apply voltages to segmented electrodes on the chip to control ion motion. Additionally, we present the incorporation of an integrated circuit that uses an analog switch to reduce voltage noise on trap electrodes due to the integrated amplifiers by over 50 dB. We verify the function of our integrated electronics by performing diagnostics with trapped ions and find noise and speed performance similar to those that we observe using external control elements

    Brief of Amicus Curiae Professors Elizabeth A. Clark, Robert F. Cochran, Jr., Carl H. Esbeck, David F. Forte, Richard W. Garnett, Christopher C. Lund, Michael W. McConnell, Michael P. Moreland, Robert J. Pushaw, and David A., Skeel, Supporting Petitioners

    Get PDF
    The case concerns the church autonomy doctrine based on the Free Exercise Clause of the First Amendment, which declares that courts may not inquire into matters of church government or into disputes of faith and doctrine. Will McRaney was fired from a leadership position in the Southern Baptist Convention because of a conflict over policies relating to the expansion of the Baptist faith. He sued the Southern Baptist Convention in tort. The district court dismissed the suit on the grounds of the church autonomy doctrine. The Fifth Circuit reversed the district court\u27s dismissal as premature, asserting that there were possible neutral principles of law independent of the church autonomy doctrine that might be applicable to the case. The amicus brief in support of a petition of certiorari to the Supreme Court argues that the district court was correct in determining that the church autonomy doctrine requires dismissal of the suit

    Beam test results for the FiberGLAST instrument

    Get PDF
    The FiberGLAST scintillating fiber telescope is a large-area instrument concept for NASA\u27s GLAST program. The detector is designed for high-energy gamma-ray astronomy, and uses plastic scintillating fibers to combine a photon pair tracking telescope and a calorimeter into a single instrument. A small prototype detector has been tested with high energy photons at the Thomas Jefferson National Accelerator Facility. We report on the result of this beam test, including scintillating fiber performance, photon track reconstruction, angular resolution, and detector efficiency

    A method for continuous239Pu determinations in Arctic and Antarctic ice cores

    Get PDF
    Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semi-quantitative measurement of 239Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The 239Pu was measured directly using an Inductively Coupled Plasma – Sector Field Mass Spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published 239Pu records and other records of NWT. The 239Pu profiles from four Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The 239Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous 239Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly co-registered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the 239Pu record is stable through time
    corecore