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ABSTRACT 23 

Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) 24 

into the atmosphere and subsequent global deposition. We present a new method for continuous 25 

semi-quantitative measurement of 239Pu in ice cores, which was used to develop annual records 26 

of fallout from NWT in ten ice cores from Greenland and Antarctica. The 239Pu was measured 27 

directly using an Inductively Coupled Plasma – Sector Field Mass Spectrometer, thereby 28 

reducing analysis time and increasing depth-resolution with respect to previous methods. To 29 

validate this method, we compared our one year averaged results to published 239Pu records and 30 

other records of NWT. The 239Pu profiles from four Arctic ice cores reflected global trends in 31 

NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The 239Pu 32 

measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously 33 

published discrete records from Antarctica. Advantages of the continuous 239Pu measurement 34 

method are (1) reduced sample preparation and analysis time; (2) no requirement for additional 35 

ice samples for NWT fallout determinations; (3) measurements are exactly co-registered with all 36 

other chemical, elemental, isotopic, and gas measurements from the continuous analytical 37 

system; and (4) the long half-life means the 239Pu record is stable through time. 38 

ABSTRACT ART 39 

 40 
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1. INTRODUCTION 41 

The transuranic radioactive chemical element plutonium (Pu), first artificially produced in 42 

1940, is present in the environment as a result of nuclear weapons testing (NWT) conducted 43 

from 1945 to 1980 Common Era (CE).1 Plutonium primarily exists as six isotopes: 238Pu, 239Pu, 44 

240Pu, 241Pu, 242Pu, and 244Pu, with 239Pu being the most abundant in the environment and 244Pu 45 

having the longest half-life. It is estimated that 6.5 PBq of 239Pu was released globally as a result 46 

of atmospheric NWT.1  47 

Atmospheric nuclear weapons tests were primarily conducted in three major phases. Phase 48 

one occurred from 1952 to 1959 CE and was dominated by United States (U.S.) testing in the 49 

low latitude Pacific (Bikini, Eniwetok, and Johnston Islands) and in Nevada1 (Figure 1). One of 50 

the largest tests conducted during this time was the Bravo test in February 1954 at Bikini Atoll, 51 

with a total yield of 15 Mt.1 Other testing during this first period took place in the Pacific 52 

(Malden and Christmas Islands) and Australia by the United Kingdom (U.K.).1 This period was 53 

followed by the Partial Test Ban moratorium from 1959 to 1961 CE. Phase two occurred from 54 

1961 to 1962 CE and was dominated by testing conducted by the former Soviet Union (USSR) at 55 

Novaya Zemlya (Russian Arctic) and Semipalatinsk (Kazakhstan) (Figure 1). The largest 56 

Northern Hemisphere (NH) testing occurred over the Russian Arctic during this period, with the 57 

yield accounting for ~57% of all atmospheric NWT.1, 2 Additional testing was conducted at the 58 

U.S. Pacific sites. In 1963 CE, the USSR and U.S. signed the Limited Test Ban Treaty in which 59 

the two countries stopped all aboveground testing. Phase three was dominated by 64 60 

aboveground tests from 1960 to 1980 CE largely conducted by France and China. French testing 61 

was conducted in the Algerian Sahara and French Polynesia (Mururoa and Fangataufa Atolls) 62 
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while Chinese testing primarily was conducted in Lop Nor, western China1 (Figure 1). 63 

Radionuclide aerosols additionally were released during the Chernobyl accident in 1986 CE.2 64 

Aerosols from NWT were dispersed on local, regional (tropospheric), or global 65 

(stratospheric) scales. Aerosols emitted by NWT were partitioned depending on the altitude and 66 

size of the test as well as the local meteorology,1 and fallout occurred during periods ranging 67 

from minutes to five years following the atmospheric tests.3 Aerosols injected into the 68 

stratosphere, which is thermally stratified from the troposphere, had the longest residence times. 69 

Radionuclides were transported in the atmosphere from testing sites to the high latitude ice cores 70 

sites in the stratosphere.4 Radionuclides were transferred from the stratosphere to the troposphere 71 

seasonally, which in the NH occurred during the late winter to spring.4 Removal of Pu from the 72 

atmosphere occurred either through wet (precipitation) or dry deposition,2 and the greatest 73 

surface deposition of radionuclide aerosols was in the NH temperate latitudes with only 20% of 74 

the total fallout in the Southern Hemisphere (SH).5  75 

Various chemical tracers have been utilized to reconstruct the transport and deposition of 76 

radionuclides associated with NWT (i.e., 3H, 14C, 36Cl, 90Sr, 137Cs, 210Pb, 240Pu/239Pu, total-beta). 77 

Records of NWT have been developed from archives including vegetation and soil samples,4, 6 78 

corals,7, 8 air filters,3, 9 lake sediments,6, 10 polar ice cores,2, 11-14 and mid-latitude ice cores.15-19 79 

Proxies such as corals, lake sediments, and soils may exhibit post-depositional alteration, low 80 

accumulation, and mixing,6 while ice cores typically exhibit higher annual accumulation rates 81 

and minimal post-depositional alteration or mixing. Ice cores have been successfully used to 82 

reconstruct atmospheric transport and fallout of NWT.2, 20 Measurements of 239Pu also have the 83 

potential to provide specific age tie points between various ice-core and other environmental 84 

records.11 85 
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The chemical content of ice cores is a proxy for atmospheric aerosol composition and 86 

therefore historical changes. Because of the long half-life of 239Pu (24.2 ky), the records of 239Pu 87 

will be stable in ice cores through time, unlike beta-radiation-based methods. Due to the low 88 

concentration of Pu in the atmosphere and ice cores, sensitive instrumentation or large sample 89 

size is required for measurement. Traditional methods for analyzing Pu in ice cores include 90 

Accelerator Mass Spectrometry (AMS) which requires large dedicated sample sizes (hence 91 

reduced depth and temporal resolution, typically ~3 years) and is time consuming both for 92 

sample preparation and analysis.16 Gabrieli et al.15 achieved higher resolution using semi-93 

quantitative Inductively Coupled Plasma – Sector Field Mass Spectrometry (ICP-SFMS 94 

equipped with a desolvation nebulizer) measurements of 239Pu in discrete samples from an ice 95 

core from the Swiss/Italian Alps. These measurements yielded a time resolution of 0.5 to 1.5 96 

years while greatly reducing the time required for analysis.15 Here we extend the ice core ICP-97 

SFMS method from discrete to continuous, melter-based measurements using ICP-SFMS21 – 98 

with the aim of minimizing sample requirements, sample handling, and decontamination efforts 99 

while maximizing depth resolution, measurement robustness and ensuring exact depth 100 

registration with all other chemical, elemental, isotopic, and gas measurements. We applied this 101 

new method to an array of ten annually dated ice cores from widely spaced sites both in 102 

Antarctica and Greenland (Figure 1) to develop an annual, semi-quantitative record of 239Pu 103 

deposition throughout the high latitudes, and evaluate this new method through comparison to 104 

previously published discrete 239Pu records. We also demonstrated the usefulness of this new 105 

method as a dating tool by applying the method to three additional ice cores from Alaska, the 106 

Russian Arctic, and Antarctica with lower confidence depth-age scales.  107 

2. MATERIAL AND METHODS 108 
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2.1 Samples 109 

 Four Arctic and six Antarctic ice cores were analyzed for semi-quantitative 239Pu 110 

concentrations (Table 1, Figure 1). All ten cores previously had been dated using annual layer 111 

counting of multiple seasonal chemical cycles in the ice, and the dating was constrained with 112 

volcanic synchronization to the timescale of Sigl et al.22,23 The Arctic cores included D4,24 113 

Summit_2010, Tunu2013,22 and NEEM-2011-S122 (Figure 1). The Antarctic cores are Aurora 114 

Basin North (ABN) and B4025 from East Antarctica, James Ross Island26 (JRI) from the 115 

Antarctic Peninsula, and Pine Island Glacier (PIG),27 Thwaites Glacier (THW),27 and the divide 116 

between Pine Island and Thwaites Glaciers (DIV)27 from West Antarctica (Figure 1). Three 117 

additional ice cores from Alaska, the Russian Arctic, and Antarctica were also analyzed for 239Pu 118 

and these samples consisted of lower confidence depth-age scales and will be discussed in detail 119 

in section 4.3. 120 

2.2 Analytical Methods 121 

Pu and a broad range of more than 20 elements and chemical species were analyzed using 122 

the Desert Research Institute’s (DRI’s) continuous melter system (adapted from McConnell et 123 

al.21) (Figure 2). For this study, methods and results will focus on 238U and 239Pu.  Prior to 124 

analysis, longitudinal samples with a cross section of ~0.032 by ~0.032 m from all ice cores were 125 

cut and the ends decontaminated by scraping with a pre-cleaned ceramic knife.21, 28 The ice cores 126 

were melted continuously from bottom to top and a portion of the meltwater from the 127 

uncontaminated center of the longitudinal sample was introduced to a Thermo-Finnigan 128 

Element2 (Thermo Scientific, Bremen, Germany) ICP-SFMS approximately four minutes after 129 

melting. The continuous sample stream was acidified inline to 2% HNO3, with 89Y and 115In 130 

added to the sample stream as external and internal standards, respectively (Figure 2). The ICP-131 

SFMS was housed in a class-100 clean room, and the instrument outfitted with a cyclonic spray 132 
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chamber and a Teflon® PFA self-aspirating nebulizer (Elemental Scientific, Omaha, NE, USA) 133 

for stable sample introduction. The tubing from the melter into the ICP-SFMS was acid cleaned 134 

(1% HNO3) at least twice daily.  135 

The ICP-MS instrument measured a suite of elements continuously in low resolution 136 

(M/ΔM = 300)21 (Figure 2). Therefore when conducting continuous elemental measurements of 137 

ice cores, there is an inherent tradeoff between temporal resolution of the analyses (i.e. ice core 138 

depth resolution) and measurement time spent on each element (Figure 2). With increased 139 

measurement time spent on each element, the number of measurements per element would 140 

increase, however the ice core depth resolution per element would decrease. This issue arises 141 

when conducting continuous Pu measurements. For 239Pu measurements, the magnet was fixed at 142 

mass 238.050 with electric scanning (E-scan) between 238U and 239Pu. The 239Pu sample time was 143 

0.4 s with 50 samples per peak (for 4 s total), and the 238U sample time was 0.02 s with 50 144 

samples per peak. Overall, instrument measurement of all elements consisted of an effective 145 

sample rate of approximately 8 to 10 s (~6 mm sample depth). This approach allows for enough 146 

measurement time to be spent on Pu to acquire robust measurements while maintaining the ice 147 

core depth resolution for the additional elements. Ice core samples were not filtered, as particle 148 

influences are minimal. Every ~2.5 hours during routine pauses in the continuous ice-core 149 

analyses, procedural blanks were analyzed.  150 

Similar to Gabrieli et al.,15 we conducted an indirect calibration of 239Pu utilizing 238U. 151 

Five standards ranging in U concentration from 0.01 to 8.0 pg g-1 were measured at the 152 

beginning of each analysis day with quality control standards analyzed at the beginning and end 153 

of the day. Standards were prepared from a 0.2 μg g-1 multi-elemental stock solution (Inorganic 154 

Ventures, Christiansburg, VA, USA) in ultrapure 1% HNO3. Using the diluted standards, we 155 
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acquired a linear calibration curve and matrix matched the standards to the samples. As 156 

demonstrated by Gabrieli et al.,15 this method provides a first approximation since the Pu and U 157 

ions behave similarly in the ICP-SFMS. From the semi-quantitative calibration, the 239Pu results 158 

were expressed in concentration and activity units, using the 239Pu specific activity value from 159 

Baglan et al.29 of 2.29x109 Bq g-1. Depositional flux of 239Pu was calculated from 239Pu activity 160 

multiplied by each year’s water-equivalent accumulation derived from annual-layer counting. 161 

Since an indirect calibration was conducted 239Pu concentration, activity and flux are semi-162 

quantitative. 163 

One potential source of interference for 239Pu is 238UH+.15 As shown by Gabrieli et al.,15 164 

at low U concentrations (<40 pg g-1) the 238UH+ interferences were minimal and when 165 

interferences were detected, the interferences were much greater than 239Pu measurements. In 166 

this study, the 1940 to 1985 CE average U concentration was ~0.25 pg g-1 for the Greenland ice 167 

cores and ~0.05 pg g-1 for the Antarctic ice cores. Additionally co-variability between Pu and U 168 

measurements was not observed for the Greenland or Antarctic ice cores between 1940 to 1985 169 

CE. While the U cocentrations are low, to avoid potential 238UH+ interferences impacting results, 170 

the 4 s dwell for every 10 s sampling rate was averaged to one year intervals (~40 Pu 171 

measurements year-1) therefore reducing the measurement variability. To calculate the detection 172 

limit, blanks were analyzed periodically throughout the continuous analyses. The blank results 173 

were averaged to ~100 s intervals (~10 Pu measurements). The detection limit was then 174 

calculated as three times the standard deviation of the blanks with an average value of ~0.24 fg g-175 

1 (~0.55 mBq kg-1). After 60 s of blank washout, >90% of all U was removed, therefore memory 176 

effects are thought to be minimal. Blank correction was made by averaging the sample 239Pu 177 
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value from 1900 to 1940 CE and subtracting from measured values. The average 239Pu for the ten 178 

ice cores from 1900 to 1940 CE was 0.28 fg g-1.  179 

3. RESULTS 180 

Here we report continuous measurements of 239Pu from four Arctic and six Antarctic ice 181 

cores. All cores were previously dated with annual-layer counting with age uncertainties 182 

typically ≤ 1 year. The 239Pu data are presented as yearly averages. Composite records for 183 

concentration, activities, and fluxes were calculated from the geometric mean of the annual 184 

averages.  185 

In the Arctic, 239Pu was first detected in the ice cores in 1953 CE, followed by a peak in 186 

1955 CE, a small decline in 1956 CE, and increased values to 1959 CE (Figure 3). The 1955 to 187 

1959 CE period consisted of an average 239Pu semi-quantitative concentration of 1.1 fg g-1 (2.5 188 

mBq kg-1). All ice cores exhibited a minimum from 1960 to 1961 CE, with an average 189 

concentration of 0.5 fg g-1 (1.1 mBq kg-1). This was followed by a rapid increase in 239Pu 190 

concentration from 1962 to 1965 CE, with average 239Pu values of 1.6 fg g-1 (3.7 mBq kg-1), and 191 

the greatest 239Pu concentration (6.2 fg g-1) was observed in the Tunu2013 ice core in 1962 CE. 192 

The 239Pu concentration significantly declined by 1968 CE, with values returning to background 193 

by ~1980 CE. The average standard error of the measurement from 1945 to 1985 CE was 0.2 fg 194 

g-1. Concentrations varied between sites because wet and dry deposition processes may have 195 

differed with accumulation rates and other depositional processes, therefore the 239Pu activity 196 

was converted to flux (Figure 3b). The D4 ice core had a greater accumulation rate and hence 197 

greater 239Pu activity flux than the other Arctic ice cores, with an average value of 996 mBq m-2 198 

yr-1 from 1953 to 1965 CE (Figure 3b). The average 239Pu activity flux for the four Arctic ice 199 

cores from 1953 to 1965 CE was 500 mBq m-2 yr-1. 200 
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The semi-quantitative 239Pu activity measurements from six Antarctic ice cores are shown 201 

in Figure 4a. Overall, 239Pu levels were lower than those observed in the Arctic. Increased 202 

activities were observed from 1955 to 1957 CE (Figure 4a) with an average concentration of 0.4 203 

fg g-1 (0.9 mBq kg-1) and the greatest concentration (1.2 fg g-1) measured in the THW core in 204 

1955 CE. After 1957 CE, 239Pu values declined followed by a peak in 1961 CE and a second 205 

peak from 1967 to 1968 CE and a return to background by ~1975 CE. The average standard error 206 

of the measurement from 1945 to 1985 CE was 0.1 fg g-1 for the Antarctic ice cores. When 207 

accounting for accumulation rate variations, the greatest 239Pu flux was observed at the DIV, 208 

PIG, and THW cores, likely because of higher accumulation rate at these sites (Table 1, Figure 209 

4b) with an average 239Pu flux of 250 mBq m-2 yr-1 from 1953 to 1965 CE. The average Antarctic 210 

239Pu flux for the six ice cores was 120 mBq m-2 yr-1 from 1953 to 1965 CE. 211 

4. DISCUSSION  212 

4.1 Comparison to published NWT records 213 

To evaluate the 239Pu measurements, we compared composite ice-core records of 239Pu 214 

activity to published total NWT fission yields1 (Figure 5). The first significant atmospheric tests 215 

were conducted in 1952 CE and included the Mike test in Eniwetok Atoll and the 1955 CE 216 

Bravo test.1 These tests were reflected in both the Arctic and Antarctic ice cores with the first 217 

detection of 239Pu in 1953 CE and increased 239Pu from 1955 to 1959 CE dominated by the U.S. 218 

tests in the low-latitude Pacific. With the largest tests conducted from 1952 to 1958 CE.1 The 219 

Partial Test Ban moratorium resulted in a decline in 239Pu, but values remained above baseline. 220 

This has been shown in other ice cores15 and is thought to be due to the longer residence time of 221 

239Pu in the atmosphere. Post-moratorium in the fall of 1961 CE, the USSR resumed tests 222 

corresponding to a period of the most powerful testing, particularly at the Novaya Zemlya site 223 

with a test in October 1961 CE with a total release of 50 Mt.1 This increase in testing clearly was 224 
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reflected in the Arctic record, with the greatest measured values during the post-moratorium 225 

(post-1961 CE) period. Unlike the Arctic, where the peak 239Pu concentration measurement 226 

occurred during the early 1960s, after 1958 CE the Antarctic 239Pu record remained relatively 227 

low, with only a slight increase in the early and late 1960s. Although the tests conducted in the 228 

1960s were large, there was minimal transport from the Russian Arctic to Antarctica, hence the 229 

low 239Pu. In 1963 CE, the Limited Test Ban Treaty was signed and 239Pu activity in both the 230 

Arctic and Antarctic records began to decline. Activity remained above baseline, however, as 231 

French and Chinese testing continued into the late 1970s. French testing in the South Pacific 232 

Ocean in Fangataufa and Mururoa Islands peaked in 1968 CE, which was reflected in our 233 

Antarctic records (Figure 5).   234 

From 1953 to 1980 CE, more than 500 aboveground nuclear weapons tests resulted in 235 

global fallout of 239Pu. With most of the testing conducted in the NH, the NH to SH ratio of 239Pu 236 

fallout4 was ~3:1, and similarly the average 239Pu activity for the Arctic and Antarctic ice cores 237 

was 1.3 and 0.4 mBq kg-1, respectively.  238 

4.2 Comparison to previously published records of fallout 239 

 We performed further evaluation of the continuous 239Pu method by comparing the 240 

Antarctic and Arctic composite records to previously published discrete 239Pu records. When 241 

comparing to various ice-core records, overall good agreement was observed – expected given 242 

that NWT aerosols were globally distributed – and provided greater confidence in the method 243 

(Figure 6). Results from three Greenland sites (South Dome, Camp Century, and Dye-3) showed 244 

increased 239Pu from 1955 to 1960 CE with greater values from 1963 to 1965 CE.11, 30, 31 The 245 

1965 CE 239Pu activity from South Dome30, 32 was 9 ±0.3 d.p.h. kg-1, similar to the average 246 

activity of 2.4 mBq kg-1 observed in Greenland from this study. The average value at Camp 247 
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Century32 for the 1965 CE stratum, however, was higher at 11.3±0.3 d.p.h. kg-1, potentially 248 

because of variations in flux. The 239Pu post-moratorium (1962 to 1965 CE) to pre-moratorium 249 

(1955 to 1959 CE) ratio was 59:41% for Dye-3, 56:44% for South Dome,31 and 60:40% for this 250 

study. These ratios were offset from the 70:30% determined from the total atmospheric NWT, 251 

possibly due to variations in the type of weapons tested,31 transport, or depositional processes.  252 

With respect to lower latitude records, the Colle Gnifetti and Colle du Dome from the 253 

Alps both show two 239Pu peaks in the pre-moratorium period (1955 to 1959 CE) with a 254 

minimum in 1957 CE,15 similar to the observations in the Arctic records (Figure 6). The records 255 

from UK herbarium specimens,4 and ice cores from Belukha Glacier,16 Colle Gnifetti,15 and 256 

Colle du Dome4 all demonstrate increased 239Pu activity post-moratorium (post-1961 CE). 257 

 Few studies have been conducted on Antarctic ice cores, but we observed generally 258 

favorable agreement with discrete 239Pu records from Antarctica. The 239Pu record from the Ross 259 

Ice Shelf showed a similar trend to the Antarctic ice-core records presented here, with the 260 

greatest 239Pu values observed from 1952 to 1955 CE (~8 d.p.h. kg-1),33 slightly higher than the 261 

peak values observed in this study. This was followed by a 239Pu activity peak of about half the 262 

size from 1962 to 1966 CE attributed to USSR and U.S. testing and an increase in the early 263 

1970s attributed to French low-latitude testing.33 Similar observations were made at Dome C 264 

with a large increase in 239Pu observed in 1956 CE (34 ±0.8 d.p.h. kg-1) and significantly lower 265 

levels in the 1960s.34 The 239Pu activity record from Dome C was greater than those observed 266 

here, but displayed a very similar overall trend.32-34 The post-moratorium (1962 to 1965 CE) to 267 

pre-moratorium (1955 to 1959 CE) ratio for 239Pu was 36:64 % for Dome C, 57:43 % for the 268 

Ross Ice Sheet,31 and for this study was 38:62 % (Figure 6).   269 

4.3 Application of the continuous 239Pu method 270 
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Considering the favorable comparison between the well-dated ice cores to previously 271 

published discrete records, we applied our method to ice cores with lower confidence depth-age 272 

scales and compared the measurements to the Arctic and Antarctic 239Pu composite records 273 

(Figure 7). Three additional cores were analyzed for 239Pu from sites where very low snow 274 

accumulation and/or surface melting and percolation result in less distinct annual chemical 275 

cycles and so lower confidence depth-age scales (Table 1). These additional cores included 276 

McCall Glacier (McCallUC) from the Brooks Range, Alaska,35 Akademii Nauk36 from the 277 

Russian Arctic, and a Norwegian/U.S. (NORUS) traverse core Site 8_5 from East 278 

Antarctica37(Figure 1).  279 

The Akademii Nauk results from Severnaya Zemlya (Russian Arctic), located in close 280 

proximity to the Russian Novaya Zemlya test site (Figure 1), showed increased 239Pu from 1953 281 

to 1958 CE, with a peak value of 16 mBq kg-1 in 1955 CE and no 239Pu increase in the post-282 

moratorium period (Figure 7b). This was similar to the 210Pb measurements on the same ice core 283 

(Figure 7b) which showed a peak from 1953 to 1956 CE.12 This is in contrast to the 137Cs activity 284 

measurements from Akademii Nauk which peaked from 1962 to 1965 CE with a smaller increase 285 

from 1953 to 1955 CE, in agreement with NWT records12 (Figure 7b). The Austfonna ice core 286 

record from Svalbard, sampled at a 3-5 year resolution, also contained one significant 239Pu peak 287 

from 1956 to 1959 CE (Figure 6b). Considering the low Pu sampling resolution of the Austfonna 288 

ice core record from Svalbard, care must be taken when interpreting this core. However, 289 

previous studies propose that the deeper 239Pu from Austfonna2 and the deeper 210Pb peak in 290 

Akademii Nauk12 are due to the percolation and migration of 239Pu and 210Pb during melt 291 

periods.2, 12, 36 This interpretation is potentially supported by the 239Pu measurements presented 292 

here. Alternatively, the electrical conductivity and sulfate records for Akademii Nauk exhibited a 293 



14 
 

sharp increase at 1956 CE thought to be associated with the Bezymianny volcanic eruption.36 294 

This suggests that the 210Pb and 239Pu records in Akademii Nauk may be impacted by dust 295 

deposited during the volcanic event.36 These results demonstrate that an ice core with high melt 296 

and high amount of volcanic deposits may impact the 239Pu record. 297 

 The 239Pu record from McCallUC consisted of the greatest 239Pu activity measured 298 

(Figure 7c). 239Pu was initially detected in 1946 CE and steadily increased to a peak in 1956 CE 299 

of 13.6 mBq kg-1. This was followed by a decline in 1957 CE and a second peak in 1959 CE. 300 

Post-1961, 239Pu activities increased to 19 mBq kg-1 in 1964 CE. Values in the McCallUC record 301 

remained elevated until 1980 CE, when values returned to baseline. While the 239Pu activity was 302 

much greater in McCallUC than found in the other cores analyzed here, the overall pattern was 303 

similar to observed Greenland records, verifying the depth-age scale (Figure 7). The post-304 

moratorium (1962 to 1965 CE) to pre-moratorium (1955 to 1959 CE) ratio for 239Pu was 59:41% 305 

for McCallUC, also similar to the Greenland records. The McCallUC site is a high dust site 306 

potentially influenced by high northern latitude mining operations. Therefore, the greater 239Pu 307 

activities measured in the McCallUC record may be impacted by the deposition of crustal dust 308 

material contaminated with 239Pu or 238U, suggesting that care must be taken when applying this 309 

method in high dust localities.15 310 

 The NORUS site 8_5 is a site of very low accumulation, however the 239Pu results agreed 311 

well with the composite Antarctic record providing confidence in the age dating of this core. The 312 

239Pu record showed increased semi-quantitative 239Pu activity from 1953 to 1956 CE and lower 313 

239Pu activity post-moratorium (Figure 7d). The semi-quantitative 239Pu activity was much 314 

greater than that measured at the other Antarctic sites due to the low accumulation rate (Table 1). 315 
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When accounting for variations in snowfall rates, the 1955 CE 239Pu activity flux was 130 mBq 316 

m-2 yr-1 for site 8_5, lower than the average 277 mBq m-2 yr-1 observed in Antarctica. 317 

4.4 Environmental application  318 

These results demonstrate the capabilities of the continuous ICP-SFMS 239Pu method 319 

when applied to ice cores. Here we produced two high latitude composite records of 239Pu 320 

applicable to the future evaluation and synchronization of ice cores chronologies, particularly for 321 

hard to date ice cores. While this method should be used with caution in high dust regions 322 

because of isobaric interferences from high U levels, our method for semi-quantitative 239Pu 323 

determinations provides an age constraint without the need for additional ice analyses. The 324 

continued application of this new method to a wide range of ice cores from varying localities 325 

may additionally shed light on lower latitude atmospheric aerosol sources and transport 326 

processes to the high latitudes.  327 

FIGURE CAPTIONS 328 

Figure 1: Ice cores analyzed in this study with well-constrained ages are shown as circles; ice 329 

cores with less constrained ages are shown as triangles. Black squares are 239Pu records 330 

previously published from U.K. herbarium samples,4 and ice cores from Austfonna,2 Colle du 331 

Dome near Mont Blanc,4 Colle Gnifetti,15 and Belukha Glacier.16 Crosses indicate sites with 332 

significant NWT.1 333 

Figure 2: Schematic of the ice-core melter, ICP-SFMS (left) and continuous flow analysis21 334 

(CFA) (right) systems, with examples of the types of elements and chemical species analyzed. 335 

The water pumped to the ICP-SFMS is from the center of the ice, and the flow path to both ICP-336 

SFMS instruments is highlighted in red. 337 

Figure 3: Annual average 239Pu results from the Arctic ice cores with well-constrained ages. (a) 338 

Semi-quantitative 239Pu activities and (b) semi-quantitative 239Pu activity fluxes for each of the 339 

ice cores with the composite geometric mean in black. 340 

Figure 4: Annual average 239Pu results from the Antarctic ice cores with well-constrained ages. 341 

(a) Semi-quantitative 239Pu activities and (b) semi-quantitative 239Pu activity fluxes for each of 342 

the ice cores with the composite geometric mean in black. 343 
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Figure 5: Arctic (black) and Antarctic (red) composite semi-quantitative 239Pu activity compared 344 

to total NWT fission yields.1 The NWT fission yields are divided by country and location of 345 

testing. Error bars represent the standard error of the mean. 346 

Figure 6: Comparison to previously published 239Pu records. (a) Arctic mean (this study) (black), 347 

(b) 239Pu activity from Austfonna ice core (purple),2 (c) Belukha Glacier ice core (light blue)16, 348 

(d) herbarium samples collected in the U.K. (green),4 (e) Colle du Dome ice core (orange),4 (f) 349 

Colle Gnifetti ice core (blue),15 and (g) Antarctic composite (this study) (red). Note the Colle du 350 

Dome 239Pu activity record is plotted on its own depth scale. Error bars are standard error of the 351 

mean. 352 

Figure 7: Comparison between 239Pu activity records from well-dated ice cores and ice cores 353 

with less constrained age scales. (a) Arctic composite record, (b) Akademii Nauk ice core 239Pu 354 

activity (green), (c) McCallUC ice core (blue), (d) the Antarctic NORUS site 8_5 (purple), and 355 

(e) the Antarctic composite. Also shown are the Akademii Nauk 210Pb activity (orange) and 137Cs 356 

activity (brown) measurements from Pinglot et al.12  Error bars are standard error of the mean. 357 

 358 

   359 
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TABLES AND FIGURES 360 

Latitude Longitude 
Recent 

Accumulation
Site (deg) (deg) kg m-2 y-1 

D4 71°24' N 43°54' W 414 
NEEM_2011_S1 77° 26' 56" N 51° 03' 22" W 204 

Summit 2010 72° 36' N   38° 18' W 221 
Tunu2013 78° 2' N 33° 52' W  112 

Akademii Nauk* 80° 31' N 94° 49' E 423 
McCallUC* 69° 18' N 143° 48' W 546 

ABN 72° 00' S 110° 00' E 109 
B40 75° 0' S 0°3'36" E 68 
DIV 76° 46' 13" S 101° 44' 15" W 372 
JRI 64° 12' S 57° 42' W 595 
PIG 77° 57' 25" S 95° 57' 42" W 400 

THW 76° 57' 9" S 121° 13' 13" W 274 
Site_8_5* 82° 38' S 17° 52' E 35 

 361 

Table 1: Arctic and Antarctic sites used in this study. *Indicates records with lower confidence 362 

depth-age scales. 363 

  364 



18 
 

 365 

Figure 1: Ice cores analyzed in this study with well-constrained ages are shown as circles; ice 366 

cores with less constrained ages are shown as triangles. Black squares are 239Pu records 367 

previously published from U.K. herbarium samples,4 and ice cores from Austfonna,2 Colle du 368 

Dome near Mont Blanc,4 Colle Gnifetti,15 and Belukha Glacier.16 Crosses indicate sites with 369 

significant NWT.1 370 

 371 

 372 

 373 

 374 
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 375 

Figure 2: Schematic of the ice-core melter, ICP-SFMS (left) and continuous flow analysis21 376 

(CFA) (right) systems, with examples of the types of elements and chemical species analyzed. 377 

The water pumped to the ICP-SFMS is from the center of the ice, and the flow path to both ICP-378 

SFMS instruments is highlighted in red. 379 

 380 

  381 
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 382 

Figure 3: Annual average 239Pu results from the Arctic ice cores with well-constrained ages. (a) 383 

Semi-quantitative 239Pu activities and (b) semi-quantitative 239Pu activity fluxes for each of the 384 

ice cores with the composite geometric mean in black. 385 

  386 
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 387 

Figure 4: Annual average 239Pu results from the Antarctic ice cores with well-constrained ages. 388 

(a) Semi-quantitative 239Pu activities and (b) semi-quantitative 239Pu activity fluxes for each of 389 

the ice cores with the composite geometric mean in black. 390 
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 391 

Figure 5: Arctic (black) and Antarctic (red) composite semi-quantitative 239Pu activity compared 392 

to total NWT fission yields.1 The NWT fission yields are divided by country and location of 393 

testing. Error bars represent the standard error of the mean. 394 

 395 

 396 

 397 

  398 
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 399 

Figure 6: Comparison to previously published 239Pu records. (a) Arctic mean (this study) (black), 400 

(b) 239Pu activity from Austfonna ice core (purple),2 (c) Belukha Glacier ice core (light blue)16, 401 

(d) herbarium samples collected in the U.K. (green),4 (e) Colle du Dome ice core (orange),4 (f) 402 

Colle Gnifetti ice core (blue),15 and (g) Antarctic composite (this study) (red). Note the Colle du 403 

Dome 239Pu activity record is plotted on its own depth scale. Error bars are standard error of the 404 

mean. 405 

  406 
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 407 

Figure 7: Comparison between 239Pu activity records from well-dated ice cores and ice cores 408 

with less constrained age scales. (a) Arctic composite record, (b) Akademii Nauk ice core 239Pu 409 

activity (green), (c) McCallUC ice core (blue), (d) the Antarctic NORUS site 8_5 (purple), and 410 

(e) the Antarctic composite. Also shown are the Akademii Nauk 210Pb activity (orange) and 137Cs 411 

activity (brown) measurements from Pinglot et al.12  Error bars are standard error of the mean. 412 

 413 

 414 

 415 

 416 

 417 

 418 
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