1,515 research outputs found

    Humpty Dumpty to Moslem art.

    Get PDF
    High-precision measurements of gravitational-wave-induced length changes in Michelson interferometers, quantum-optical realizations of the Einstein-Bohr dialogue on Young's double-slit experiment using micromascrs, bistable systems, hydrodynamical pattern formation and magically complex phase-space webs with the beauty of Moslem art born out of nonlinear dynamical systems - one could hardly name fields of physics further apart than these

    Dissipation of Quasiclassical Turbulence in Superfluid 4^4He

    Get PDF
    We compare the decay of turbulence in superfluid 4^4He produced by a moving grid to the decay of turbulence created by either impulsive spin-down to rest or by intense ion injection. In all cases the vortex line density LL decays at late time tt as Lt3/2L \propto t^{-3/2}. At temperatures above 0.8 K, all methods result in the same rate of decay. Below 0.8 K, the spin-down turbulence maintains initial rotation and decays slower than grid turbulence and ion-jet turbulence. This may be due to a decoupling of the large-scale superfluid flow from the normal component at low temperatures, which changes its effective boundary condition from no-slip to slip.Comment: Main article: 5 pages, 3 figures. Supplemental material: 4 pages, 3 figures. Accepted for publication in Physical Review Letter

    Precise Measurement of the Spin Parameter of the Stellar-Mass Black Hole M33 X-7

    Full text link
    In prior work, {\it Chandra} and Gemini-North observations of the eclipsing X-ray binary M33 X-7 have yielded measurements of the mass of its black hole primary and the system's orbital inclination angle of unprecedented accuracy. Likewise, the distance to the binary is known to a few percent. In an analysis based on these precise results, fifteen {\it Chandra} and {\it XMM-Newton} X-ray spectra, and our fully relativistic accretion disk model, we find that the dimensionless spin parameter of the black hole primary is a=0.77±0.05a_* = 0.77 \pm 0.05. The quoted 1-σ\sigma error includes all sources of observational uncertainty. Four {\it Chandra} spectra of the highest quality, which were obtained over a span of several years, all lead to the same estimate of spin to within statistical errors (2%), and this estimate is confirmed by 11 spectra of lower quality. There are two remaining uncertainties: (1) the validity of the relativistic model used to analyze the observations, which is being addressed in ongoing theoretical work; and (2) our assumption that the black hole spin is approximately aligned with the angular momentum vector of the binary, which can be addressed by a future X-ray polarimetry mission.Comment: 14 pages, 3 figures, 1 table, published in ApJ Letters; as explained in the erratum at the end of the text, the spin parameter has been corrected upward from a*=0.77 to a*=0.84. Apart from the addition of the erratum, the paper is unchanged

    X-ray reflected spectra from accretion disk models. III. A complete grid of ionized reflection calculations

    Get PDF
    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index \Gamma of the illuminating radiation, the ionization parameter \xi at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A_{Fe} relative to the solar value. The ranges of the parameters covered are: 1.2 \leq \Gamma \leq 3.4, 1 \leq \xi \leq 10^4, and 0.5 \leq A_{Fe} \leq 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file{\url{http://hea-www.cfa.harvard.edu/~javier/xillver/}} suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.Comment: 70 pages, 21 figures, submitted to Ap

    Detecting the harmonics of oscillations with time-variable frequencies

    Get PDF
    A method is introduced for the spectral analysis of complex noisy signals containing several frequency components. It enables components that are independent to be distinguished from the harmonics of nonsinusoidal oscillatory processes of lower frequency. The method is based on mutual information and surrogate testing combined with the wavelet transform, and it is applicable to relatively short time series containing frequencies that are time variable. Where the fundamental frequency and harmonics of a process can be identified, the characteristic shape of the corresponding oscillation can be determined, enabling adaptive filtering to remove other components and nonoscillatory noise from the signal. Thus the total bandwidth of the signal can be correctly partitioned and the power associated with each component then can be quantified more accurately. The method is first demonstrated on numerical examples. It is then used to identify the higher harmonics of oscillations in human skin blood flow, both spontaneous and associated with periodic iontophoresis of a vasodilatory agent. The method should be equally relevant to all situations where signals of comparable complexity are encountered, including applications in astrophysics, engineering, and electrical circuits, as well as in other areas of physiology and biology

    Advection-Dominated Accretion and Black Hole Event Horizons

    Full text link
    The defining characteristic of a black hole is that it possesses an event horizon through which matter and energy can fall in but from which nothing escapes. Soft X-ray transients (SXTs), a class of X-ray binaries, appear to confirm this fundamental property of black holes. SXTs that are thought to contain accreting black holes display a large variation of luminosity between their bright and faint states, while SXTs with accreting neutron stars have a smaller variation. This difference is predicted if the former stars have horizons and the latter have normal surfaces.Comment: 11 pages, including 2 tables and 2 figures. To appear in The Astrophysical Journal Letter

    The Extreme Spin of the Black Hole in Cygnus X-1

    Full text link
    The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole's accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a/M>0.95 (3\sigma). For a less probable (synchronous) dynamical model, we find a/M>0.92 (3\sigma). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disk's low luminosity.Comment: Paper III of three papers on Cygnus X-1; 21 pages including 5 figures and 12 tables, ApJ in press. The paper is significantly restructured; two further tests of the robustness of our spin measurement are presented, and our error analysis has been substantially improved; the conclusions are unchange

    Measuring Black Hole Spin by the Continuum-Fitting Method: Effect of Deviations from the Novikov-Thorne Disc Model

    Get PDF
    The X-ray spectra of accretion discs of eight stellar-mass black holes have been analyzed to date using the thermal continuum fitting method, and the spectral fits have been used to estimate the spin parameters of the black holes. However, the underlying model used in this method of estimating spin is the general relativistic thin-disc model of Novikov & Thorne, which is only valid for razor-thin discs. We therefore expect errors in the measured values of spin due to inadequacies in the theoretical model. We investigate this issue by computing spectra of numerically calculated models of thin accretion discs around black holes, obtained via three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations. We apply the continuum fitting method to these computed spectra to estimate the black hole spins and check how closely the values match the actual spin used in the GRMHD simulations. We find that the error in the dimensionless spin parameter is up to about 0.2 for a non-spinning black hole, depending on the inclination. For black holes with spins of 0.7, 0.9 and 0.98, the errors are up to about 0.1, 0.03 and 0.01 respectively. These errors are comparable to or smaller than those arising from current levels of observational uncertainty. Furthermore, we estimate that the GRMHD simulated discs from which these error estimates are obtained correspond to effective disc luminosities of about 0.4-0.7 Eddington, and that the errors will be smaller for discs with luminosities of 0.3 Eddington or less, which are used in the continuum-fitting method. We thus conclude that use of the Novikov-Thorne thin-disc model does not presently limit the accuracy of the continuum-fitting method of measuring black hole spin.Comment: 13 pages, 7 figures, accepted for publication in MNRAS. v2: fixed typo in author name, updated acknowledgment
    corecore