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ABSTRACT
The X-ray spectra of accretion discs of eight stellar mass black holes have been analysed
to date using the thermal continuum-fitting method, and the spectral fits have been used to
estimate the spin parameters of the black holes. However, the underlying model used in this
method of estimating spin is the general relativistic thin-disc model of Novikov & Thorne,
which is only valid for razor-thin discs. We therefore expect errors in the measured values
of spin due to inadequacies in the theoretical model. We investigate this issue by computing
spectra of numerically calculated models of thin accretion discs around black holes, obtained
via three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations. We
apply the continuum-fitting method to these computed spectra to estimate the black hole spins
and check how closely the values match the actual spin used in the GRMHD simulations. We
find that the error in the dimensionless spin parameter is up to about 0.2 for a non-spinning
black hole, depending on the inclination. For black holes with spins of 0.7, 0.9 and 0.98, the
errors are up to about 0.1, 0.03 and 0.01, respectively. These errors are comparable to or smaller
than those arising from current levels of observational uncertainty. Furthermore, we estimate
that the GRMHD simulated discs from which these error estimates are obtained correspond
to effective disc luminosities of about 0.4–0.7 Eddington, and that the errors will be smaller
for discs with luminosities of 0.3 Eddington or less, which are used in the continuum-fitting
method. We thus conclude that use of the Novikov–Thorne thin-disc model does not presently
limit the accuracy of the continuum-fitting method of measuring black hole spin.

Key words: accretion, accretion discs – black hole physics – MHD – methods: numerical –
X-rays: binaries.

1 IN T RO D U C T I O N

Astrophysical black holes are described by just two parameters:
their mass M and angular momentum J, with the latter usually ex-
pressed in terms of the dimensionless spin parameter a∗ = cJ/GM2.
While the mass M is relatively straightforward to obtain using dy-
namical measurements, the spin parameter a∗ is less so. In accreting
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black holes, however, emission from the inner disc gives us a han-
dle on the spin. According to the model developed by Novikov &
Thorne (1973, hereafter NT)1 for a razor-thin accretion disc around
a black hole, viscous evolution causes the accreting matter to move
slowly inwards along nearly Keplerian orbits until reaching the ra-
dius of the innermost stable circular orbit (ISCO), after which the
gas plunges into the black hole on a dynamical time-scale. Thus, the
inner edge of the viscous accretion disc is predicted to be very close
to the ISCO. This link between the radius of the ISCO, rISCO, and

1 This is the relativistic generalization of the standard thin-disc model of
Shakura & Sunyaev (1973).
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the radius of the inner edge of the disc, rin, is well supported by em-
pirical evidence that the inner radius is constant in disc-dominated
states of black hole binaries (Narayan, McClintock & Shafee 2008;
Steiner et al. 2010a, and references therein), and by recent general
relativistic magnetohydrodynamic (GRMHD) simulations of thin
accretion discs (Shafee et al. 2008a; Penna et al. 2010; but see Noble,
Krolik & Hawley 2009, 2010). Therefore, measuring rin gives one
an estimate of rISCO. Since rISCO/M is a monotonic function of a∗
(e.g. Shapiro & Teukolsky 1983), we can then obtain the spin of
the black hole. This is the main technique currently being used to
estimate the spins of stellar mass black holes in binary systems.

One of the ways of measuring rin involves2 fitting the thermal
X-ray continuum spectrum from the disc with the NT model spec-
trum (e.g. Zhang, Cui & Chen 1997; Shafee et al. 2006; Davis, Done
& Blaes 2006; Gou et al. 2009, 2010; Steiner et al. 2009, 2010a)
using models such as KERRBB (Li et al. 2005) and BHSPEC (Davis &
Hubeny 2006) in the data-analysis package XSPEC (Arnaud 1996).
From the fit, one obtains rin, or equivalently, a∗, if suitable estimates
of the black hole mass, inclination and distance are available (e.g.
see Gou et al. 2009). Both KERRBB and BHSPEC assume that the struc-
ture of the disc and its emission properties are described accurately
by the NT model.

It is therefore clear that a crucial issue in black hole spin esti-
mation via the continuum-fitting method is the NT model and its
reliability. How much do real accretion discs with finite thickness
differ from the NT disc? This question was addressed by Paczyński
(2000) and Afshordi & Paczyński (2003), who argued that devia-
tions from the NT model decrease monotonically with decreasing
disc thickness and that thin discs with dimensionless thickness |h/r|
� 1 are well described by the model, if the viscosity parameter α �
1. Their argument was confirmed by detailed calculations carried
out by Shafee, Narayan & McClintock (2008b). This still leaves
open the question of whether magnetized discs might deviate sub-
stantially from the NT model even at small disc thicknesses (Krolik
1999). A number of recent studies of magnetized discs using 3D
GRMHD simulations, including Shafee et al. (2008a), Noble et al.
(2009, 2010) and Penna et al. (2010), have explored this question.
These authors estimate that the luminosity and stress of the inner
regions of simulated discs differ from the NT model by factors
ranging from a few per cent (Penna et al. 2010) to as much as
20 per cent (Noble et al. 2009). The question then is how much this
departure affects measurements of black hole spin.

We investigate this question using a very straightforward ap-
proach: we start with a disc model obtained via the above-mentioned
GRMHD simulations (principally models similar to those described
in Penna et al. 2010), compute the disc emission as a function of
radius using a local blackbody approximation (assuming a constant
spectral hardening factor), and use ray-tracing to compute the spec-
tra. We then fit these spectra using KERRBB and compare the resulting
spin estimate with the spin that was used in the GRMHD simulation.
Our goal is similar to that of Shafee et al. (2008b), who performed
the same analysis for a purely hydrodynamical disc, and of Li, Yuan
& Cao (2010); the important difference between the latter work and
ours is that we use disc models obtained from GRMHD simulations,
although we do not explore the effect of a finite photospheric height
in detail. Analogous work (though with a pseudo-Newtonian, not
GRMHD, code) on the systematic errors in spin estimates obtained

2 Another method involves fitting the profile of the relativistically broadened
iron line (e.g. Fabian et al. 1989, 2000; Laor 1991; Reynolds & Nowak 2003;
Brenneman & Reynolds 2006).

by fitting the broad iron emission lines from the inner accretion disc
has been done by Reynolds & Fabian (2008).

We begin in Section 2 with a description of our method, and
calculate in Section 3 the error in black hole spin estimates due
to deviations of GRMHD discs from the NT model. We discuss in
Section 4 the observational uncertainties in black hole spin determi-
nation and compare these with the errors arising from use of the NT
model. We conclude in Section 5 with a summary. Some technical
details are discussed in Appendices A, B and C.

2 ME T H O D

2.1 Calculation of disc temperature and velocity profiles
from GRMHD simulations

We work in Boyer–Lindquist (BL) coordinates xα = (t, r, θ , φ).
We use geometric units where the speed of light c, the gravitational
constant G and the Planck’s constant are set to unity, and measure
all lengths and times in units of the black hole mass M.

For this project, we reran the 3D GRMHD simulations of thin
discs described in Penna et al. (2010), for four values of the black
hole spin: a∗ = 0, 0.7, 0.9, 0.98. For completeness, we briefly re-
view the simulation setup here. The simulations solve the GRMHD
equations for plasma around a rotating black hole using the code
HARM (Gammie, McKinney & Tóth 2003) with numerous recent im-
provements, including 3D capabilities (McKinney 2006; McKinney
& Blandford 2009). The gas is initially in a torus in hydrodynamic
equilibrium surrounding the black hole (De Villiers, Hawley &
Krolik 2003; Gammie et al. 2003). The spin axes of the torus and
the black hole are aligned. The torus is seeded with a magnetic field
consisting of four poloidal loops arranged in the radial direction.
We use a polytropic equation of state for the gas, p ∝ ργ , where p, ρ
and γ are the pressure, density and adiabatic index respectively, and
choose γ = 4/3 as appropriate for a radiation pressure dominated
disc.

To keep the disc thin, we use a simple cooling prescription that
drives the gas to its initial entropy on a dynamical time-scale.3

The energy removed by the cooling prescription is assumed to be
completely lost by the accretion flow; it has no dynamical effect
on the accreting gas (the energy lost to cooling is of course tracked
and is later used to compute the disc luminosity profiles shown in
Fig. 1). The disc thickness is specified by the quantity |h/r|, where
h is the density scaleheight of the disc above the mid-plane, |h| =∫

ρ |z| dz/
∫

ρ dz, and r is the cylindrical radius. Our simulated thin
discs have |h/r| = 0.05, 0.04, 0.05 and 0.08 respectively for a∗ =
0, 0.7, 0.9 and 0.98. Following Penna et al. (2010), we perform
a temporal and azimuthal average over the steady-state portion of
the simulation results to average over the fluctuations introduced
by turbulence, since we are interested in the mean behaviour of the
accretion flow. Finally, since our discs are geometrically thin, we
perform a density-weighted average in the polar direction to obtain
the vertically integrated disc structure. This process of collapsing the
simulated disc into the equatorial plane circumvents the difficulty of
defining a photosphere for the disc and calculating emission profiles
along it. A proper treatment would require a full radiative transfer

3 One change from Penna et al. (2010) is that in the present work we cool all
the gas, including the gas in the corona, whereas in most of their simulations,
Penna et al. cooled only the disc region of the flow. The present simulations
are similar to the ‘no-tapering model’ described in Section 5.7 and fig. 13
of their paper.

C© 2011 The Authors, MNRAS 414, 1183–1194
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Figure 1. Luminosity profiles from the GRMHD simulations (solid lines)
compared with those from the NT model (dashed lines) for a∗ = 0, 0.7, 0.9
and 0.98 (bottom to top). The disc thicknesses are |h/r| = 0.05, 0.04, 0.05
and 0.08 respectively for these runs. The ISCO is located at the radius where
the NT disc luminosity goes to zero.

calculation (e.g. Davis et al. 2005; S ↪adowski et al. 2011), which is
beyond the scope of this work.

At the end of this process, both components required to calculate
the spectra are available: the radial profile of the fluid four-velocity
uμ(r) in the equatorial plane and, from the energy removed by
the cooling prescription,4 the profile of the emitted flux F(r) ≡
dE/(rdrdφdt) (where E is the energy emitted from one side of the
disc as measured by an observer at infinity). When calculating the
spectrum, the effect of electron scattering in the disc is taken into
account indirectly using a colour correction (or spectral hardening)
factor f col. For the results presented here, we choose for simplicity
a fiducial value of f col = 1.7 (Shimura & Takahara 1995). Detailed
models of disc atmospheres by Davis et al. (2005) and Davis &
Hubeny (2006) indicate that f col can vary between 1.4 and 1.7,
but this extra sophistication is not necessary for the simple tests
described in the present paper.

The flux profiles obtained from the GRMHD simulations are
only reliable within a radius inside which the accretion flow has
reached steady state. Outside this radius, which we call the inflow
equilibrium radius rie (see Penna et al. 2010, for a definition), we
extend the profiles using the analytical disc model of Page & Thorne
(1974). The procedure we use is described in Appendix A. Within
a certain range, the exact choice of rie does not affect the results of
the extrapolation, as we show in that appendix.

Fig. 1 compares the luminosity profiles d(L/Ṁ)/d(ln r) that we
obtain to those in the standard NT disc model, for four values of
the spin: a∗ = 0, 0.7, 0.9, 0.98. Here, Ṁ is the accretion rate,
and the luminosity L ≡ 2dE/dt = 2

∫
Frdrdφ = 4π

∫
Frdr , so

d(L/Ṁ)/d(ln r) = 4πr2F (r)/Ṁ (the extra factor of 2 is to account
for emission from both sides of the disc).

The NT model has no radiation from inside the ISCO, whereas the
simulations show some emission from this region. In addition, the
peak of the emission in the simulated discs is seen to shift inwards
relative to the NT model. These effects are similar to those obtained
by S ↪adowski (2009) for slim discs. As explained in that work, for
large enough accretion rates (�0.3 Eddington), the accretion flow
starts becoming radiatively inefficient at moderate radii (r ∼ 10–
30M); as a result, some of the heat generated by viscous dissipation

4 We only include the energy removed from the bound gas, since including
all the gas results in an overestimate of the luminosity (Penna et al. 2010).

at larger radii is advected inwards and released at smaller radii.
Another important effect is that discs with finite thickness have a
non-vanishing stress at the ISCO (in contrast to the razor-thin discs
which the NT model considers for which the stress is expected to
vanish). This stress leads to additional viscous dissipation at radii
r ∼ rISCO. In our model, the inward shift in the emission peak due
to both of these effects mimics a decrease in rISCO (see Fig. 1), i.e.
an increase in the predicted black hole spin. As a result, fitting the
GRMHD disc spectrum using the NT model leads to an overestimate
of the black hole spin, as we shall see in Section 3.

2.2 Calculation of the spectra

To calculate the spectrum, we assume that the flux F(r) is emitted
in the form of colour-corrected blackbody radiation (f col = 1.7),
either isotropically or with limb-darkening, as seen in the comoving
frame of the fluid. We use a standard limb-darkening prescription
(equation 5 below). We assume that after emission the radiation
propagates in vacuum.

Were the accretion disc non-relativistic, the calculation of
the spectrum would be almost trivial (see e.g. Frank, King &
Raine 2002): one would divide the disc into annuli; define an
effective blackbody temperature Teff (r) = [F(r)/σ ]1/4 in each annu-
lus, where σ is the Stefan–Boltzmann constant; use the temperature
and colour-correction factor to obtain the specific intensity Iν,disc(r)
of the emitted radiation at the disc surface and integrate it over the
disc surface to obtain the observed spectrum.

Relativity introduces three complications: (1) The effective tem-
perature has to be defined in the comoving frame of the fluid, and
so we need to transform F(r) from the BL frame into the comoving
frame. (2) Redshift between the comoving frame and the observer’s
frame, both gravitational and due to Doppler boosting, has to be
taken into account. Since the photon paths around a black hole are
complicated, the direction in which a ray needs to be emitted in
the comoving frame such that it reaches the observer is not known
a priori, which is a problem for the redshift calculation. (3) One
needs to know the emission direction to take limb darkening into
account as well. Points (2) and (3) require integrating the geodesic
equations to calculate the photon paths, which is usually referred
to as ‘ray-tracing’. This approach has been applied extensively in
the literature to a variety of problems, starting with Cunningham &
Bardeen (1973) and Cunningham (1975) (see Dexter & Agol 2009
and references therein). In particular, KERRBB (Li et al. 2005) uses
this technique to compute thin-disc spectra.

We perform ray-tracing numerically using the routines developed
by Shcherbakov & Huang (2011) and applied in Shcherbakov, Penna
& McKinney (2010). We choose a line of sight to the observer with
an inclination angle of i relative to the black hole spin axis. At a
sufficiently large distance from the black hole (r ∼ 105), we set up
an image plane perpendicular to the line of sight and shoot rays
from it parallel to the line of sight. We follow these rays until they
hit the disc,5 by directly integrating the (second-order) geodesic
equations:

d2xα

dλ2
+ �α

βγ

dxβ

dλ

dxγ

dλ
= 0, (1)

5 This is more straightforward than shooting rays from the disc, since as
mentioned earlier, the direction in which the rays need to be emitted from
the disc such that they reach the observer is not known a priori. This approach
was pioneered by Marck (1996); see also Hameury, Marck & Pelat (1994).

C© 2011 The Authors, MNRAS 414, 1183–1194
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where λ is an affine parameter along the geodesic, and �α
βγ are the

connection coefficients. The aim is to obtain the specific intensity
Iν of each ray, which can then be integrated over the image plane to
obtain the observed flux:

Fν,obs = 1

D2

∫
IνdA. (2)

Since Iν/ν
3 is a Lorentz invariant, we can immediately relate the

specific intensity Iν in the image plane to the intensity Iν,com in the
comoving frame of the fluid at the point of emission:

Iν = Iν,com (ν/νcom)3 ≡ Iν,comχ 3, (3)

where χ ≡ ν/νcom is the redshift factor, and

Iν,com = 2f −4
col ν

3
com

exp(νcom/kBfcolTcom) − 1
ϒ. (4)

Here, f col is the spectral hardening factor mentioned earlier, which
we set to 1.7 in this work, and ϒ is the limb-darkening factor (see
e.g. Li et al. 2005):

ϒ =
{

1, isotropic emission
1
2 + 3

4 cos θcom, limb-darkened emission.
(5)

So finally we have

Iν = 2f −4
col ν

3

exp(ν/kBfcolχTcom) − 1
ϒ, (6)

or

Fν,obs = 1

D2

∫
2f −4

col ν
3

exp(ν/kBfcolχTcom) − 1
ϒdA. (7)

Thus, to calculate the spectrum, we need the effective temperature
in the comoving frame Tcom, the redshift factor χ and the angle θ com

between the emitted ray and the disc normal in the comoving frame.
The first of these is obtained by transforming the emitted flux F(r),
which is initially calculated in the BL frame, into the comoving
frame, and the last two by transforming the ray four-momentum.
We show the details in Appendix B.

To calculate spectra using equation (7), we use the following
fiducial parameters: black hole mass M = 10 M�, accretion rate
Ṁ = 0.1ṀEdd and distance to the black hole D = 10 kpc. We
choose a spectral energy range of 0.1–10 keV, divided into 1000
logarithmically spaced bins. Fig. 2 compares the spectra from the
simulated and NT discs for a∗ = 0.9 and i = 75◦. The peak of the
spectrum of the simulated disc is shifted to a slightly higher energy

Figure 2. Spectra from the simulated (solid line) and NT (dashed line)
discs, for a∗ = 0.9 and i = 75◦.

Figure 3. High-energy portion of the spectra from the simulated (solid
lines) and NT (dashed lines) discs, for i = 75◦ and three values of the black
hole spin: a∗ = 0, 0.7, 0.9.

Figure 4. High-energy portion of the spectra from the simulated (solid
lines) and NT (dashed lines) discs, for a∗ = 0.9 and three inclinations: i =
15◦, 45◦, 75◦.

relative to the NT spectrum, and the peak flux is also higher. This is
precisely the effect that increasing the black hole spin would have
on the NT spectrum, and as we shall see in Section 3, fitting the
simulated spectra leads one to overestimate the spin.

Figs 3 and 4 show what happens to the difference between the
simulated and NT spectra when we vary the spin and the inclination,
respectively. The effect is visible at the high-energy end of the
spectrum. The effect of the inclination is very strong. This is because
of the excess luminosity from the inner region of the simulated disc;
this excess is more noticeable at higher inclinations due to beaming
of the emitted radiation.

2.3 Tests

We tested our code by comparing the spectra it produces for an NT
disc to those produced by KERRBB itself using the ‘fakeit’ command
in XSPEC, for the following range of parameters: black hole masses of
5, 10, 15 M�; spin parameters a∗ = 0, 0.7, 0.9; observer inclinations

C© 2011 The Authors, MNRAS 414, 1183–1194
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



BH spin from realistic temperature profiles 1187

i = 15◦, 45◦, 75◦; accretion rates Ṁ/ṀEdd = 0.1, 0.2 and distances
D = 10, 20 kpc, with and without using limb darkening. At a grid
resolution of Nb × Nβ = 100 × 100 (see the description of our grid
in Appendix C), the spectra calculated with our code converge to
the KERRBB spectra in all these cases. This confirms that the code is
robust.

3 R ESULTS

We use the following fiducial parameters for our spectra, as
mentioned earlier: black hole mass M = 10 M�, accretion rate
Ṁ = 0.1ṀEdd and distance to the black hole D = 10 kpc. The spec-
tra are fitted using KERRBB (without using returning radiation, since
we do not include it in our spectrum calculation) to obtain the black
hole spin a∗ and accretion rate Ṁ .

One more thing needs to be taken care of. Even though we av-
erage the GRMHD simulation results azimuthally and over time to
remove the effects of turbulence and obtain a mean profile for the
flux F(r) and the gas four-velocity uμ(r), there is still some stochas-
tic variation in the spin estimates with time. Therefore, we divide
the steady-state portion of each simulation into chunks of duration
�t = 1000M (each simulation has 4–5 such chunks), obtain a spin
estimate from each chunk, and then quote the mean spin estimate
and the error in the mean for each simulation.6

The results for limb-darkened emission7 are shown in columns
1, 3, 4 and 5 of Table 1. As expected, the fitted values are different
than the ones used in the GRMHD simulations. The differences are
largest at low spins. It is easy to understand why the difference is
not constant; the dependence of the disc temperature profile (which
determines the shape of the spectrum) on the spin is highly non-
linear. In particular, the position of the spectral peak in the NT
model strongly depends on the radius of the ISCO (rISCO), to the
extent that one can think of KERRBB as fitting for rISCO instead of
a∗. There is a one-to-one relationship between a∗ and rISCO (see,
e.g. Shapiro & Teukolsky 1983), shown in Fig. 5. At high spins,
rISCO varies very rapidly as a function of a∗; conversely, a∗ varies
relatively slowly as a function of rISCO. Thus, a given fractional
error in rISCO translates into a much smaller error in a∗ at higher
spins than at smaller ones. This is illustrated by the two grey bands
in Fig. 5. Each band represents a range of ±10 per cent in rISCO,
around rISCO = 6 (upper band, corresponding to a∗ = 0) and rISCO =
1.61 (lower band, corresponding to a∗ = 0.98). The corresponding
range in a∗ is ±0.2 at a∗ = 0, but only ±0.01 at a∗ = 0.98.

For reference, we show the errors in the estimated rISCO in Table 2
(the exact values of rISCO for a∗ = 0, 0.7, 0.9 and 0.98 are 6, 3.39, 2.32
and 1.61), and the fitted accretion rates in Table 3 [the fiducial rate
of 0.1ṀEdd used here corresponds to (2.45, 1.35, 0.898, 0.5982) ×
1018g s−1 for the four spins, assuming that the accretion efficiencies
are given by their NT values]. It is interesting to note that although

6 In addition, there are a couple of potential sources of systematic error: (i)
our somewhat arbitrary choice of the matching radius used for extending the
luminosity profiles beyond the inflow equilibrium radius (see Appendix A),
and (ii) the fact that we restrict ourselves to the bound gas when calculating
the luminosity profiles, as mentioned in footnote 4. We estimate the system-
atic error due to these two factors and, to be conservative, include them in
quadrature in the error estimates that we quote in Tables 1 and 3.
7 We also looked at spectra generated using isotropic emission. To fit these
spectra we turned off the limb-darkening flag of KERRBB. The resulting spin
estimates are very similar to those obtained using limb-darkened emission,
so we do not show them here.

Table 1. Spin estimates obtained by fitting the simulated
spectra (for limb-darkened emission) with KERRBB, for a range
of spins a∗ and observer inclination angles i. The model iden-
tified as ‘1 loop’ corresponds to a GRMHD simulation that
has one poloidal magnetic loop in its initial disc configura-
tion; all the other models have four loops arranged radially.

a∗ = 0 a∗ = 0, 1 loop a∗ = 0.7
|h/r| = 0.05 |h/r| = 0.07 |h/r| = 0.04

i = 0◦ 0.08 ± 0.02 0.06 ± 0.01 0.71 ± 0.01
i = 15◦ 0.08 ± 0.02 0.06 ± 0.01 0.72 ± 0.01
i = 30◦ 0.09 ± 0.02 0.07 ± 0.02 0.72 ± 0.01
i = 45◦ 0.10 ± 0.02 0.09 ± 0.02 0.73 ± 0.01
i = 60◦ 0.11 ± 0.02 0.18 ± 0.01 0.76 ± 0.01
i = 75◦ 0.15 ± 0.04 0.37 ± 0.01 0.80 ± 0.02

a∗ = 0.9 a∗ = 0.98
|h/r| = 0.05 |h/r| = 0.08

i = 0◦ 0.905 ± 0.002 0.985 ± 0.001
i = 15◦ 0.906 ± 0.002 0.985 ± 0.001
i = 30◦ 0.907 ± 0.003 0.985 ± 0.001
i = 45◦ 0.908 ± 0.003 0.986 ± 0.001
i = 60◦ 0.914 ± 0.005 0.987 ± 0.001
i = 75◦ 0.929 ± 0.006 0.991 ± 0.001

Figure 5. Relation between the black hole spin parameter a∗ and the radius
of the innermost stable circular orbit rISCO.

the errors in the fitted spins are relatively large, the errors in the
accretion rates are only a few per cent.

The other important effect is that of the observer inclination:
at high inclination, the error in the spin estimate is larger. This is
because the difference between the disc temperature profiles in the
NT model and the simulations is significant only in the inner disc. At
low inclination angles, the combined effect of gravitational redshift
and beaming of the radiation (the latter of which concentrates the
radiation close to the equatorial plane) results in this difference not
being noticeable in the spectrum. At high inclination angles, on the
contrary, beaming enhances the difference, causing the error in the
fitted spin to increase.

Changing the black hole mass, accretion rate or distance only
changes the overall scaling of the spectrum; therefore, there is
no effect on the shape of the spectrum or the spin estimates. We
should note, however, that since the GRMHD simulations use di-
mensionless quantities, the gas mass scale in the simulations is ar-
bitrary. Therefore, we have the ability to choose any accretion rate
for a given disc thickness. For real discs, this is certainly not the
case. The relation between the disc thickness and the luminosity is
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Table 2. Absolute and fractional errors in the estimated radius
of the innermost stable circular orbit, rISCO, corresponding to
the spin estimates in Table 1.

a∗ = 0 a∗ = 0.7
rISCO = 6 rISCO = 3.39

i = 0◦ −0.26 (−4.3 per cent) −0.07 (−2.0 per cent)
i = 15◦ −0.27 (−4.5 per cent) −0.07 (−2.2 per cent)
i = 30◦ −0.29 (−4.9 per cent) −0.10 (−2.9 per cent)
i = 45◦ −0.33 (−5.4 per cent) −0.15 (−4.5 per cent)
i = 60◦ −0.37 (−6.2 per cent) −0.28 (−8.2 per cent)
i = 75◦ −0.49 (−8.2 per cent) −0.51 (−15.1 per cent)

a∗ = 0.9 a∗ = 0.98
rISCO = 2.32 rISCO = 1.61

i = 0◦ −0.04 (−1.6 per cent) −0.07 (−4.1 per cent)
i = 15◦ −0.04 (−1.7 per cent) −0.07 (−4.2 per cent)
i = 30◦ −0.04 (−1.9 per cent) −0.07 (−4.5 per cent)
i = 45◦ −0.06 (−2.5 per cent) −0.08 (−5.2 per cent)
i = 60◦ −0.10 (−4.1 per cent) −0.11 (−6.9 per cent)
i = 75◦ −0.21 (−9.0 per cent) −0.18 (−11.0 per cent)

Table 3. Fitted accretion rates for the cases in
Table 1, in units of 1018 g s−1. The input val-
ues in the GRMHD simulations are denoted by
Ṁinput.

a∗ = 0 a∗ = 0.7
Ṁinput = 2.45 Ṁinput = 1.35

i = 0◦ 2.46 ± 0.01 1.37 ± 0.01
i = 15◦ 2.46 ± 0.01 1.37 ± 0.01
i = 30◦ 2.46 ± 0.01 1.37 ± 0.01
i = 45◦ 2.47 ± 0.01 1.36 ± 0.01
i = 60◦ 2.48 ± 0.01 1.34 ± 0.02
i = 75◦ 2.49 ± 0.04 1.30 ± 0.04

a∗ = 0.9 a∗ = 0.98
Ṁinput = 0.898 Ṁinput = 0.5982

i = 0◦ 0.901 ± 0.001 0.5983 ± 0.0003
i = 15◦ 0.901 ± 0.001 0.5982 ± 0.0004
i = 30◦ 0.902 ± 0.001 0.5983 ± 0.0005
i = 45◦ 0.903 ± 0.001 0.5985 ± 0.0005
i = 60◦ 0.904 ± 0.003 0.5980 ± 0.0008
i = 75◦ 0.892 ± 0.007 0.594 ± 0.001

discussed in more detail in Section 3.1. We show there that the
disc thicknesses used in our simulations (|h/r| = 0.05, 0.04, 0.05
and 0.08 for a∗ = 0, 0.7, 0.9 and 0.98 respectively) correspond to
L/LEdd = 0.5, 0.4, 0.5 and 0.7, respectively; therefore, strictly speak-
ing, our estimates of the errors in the spin determination are only
applicable for these luminosities.

We carried out a test run at a∗ = 0 with a different initial magnetic
field configuration that has one poloidal loop instead of four as in
our other runs. This model is closer in spirit to the simulations run
by Noble et al. (2009, 2010). We find that the one-loop model gives
hotter spectra and a larger error in the derived value of the spin at
large inclination angles (compare the first two columns of Table 1).
This agrees with the results described by Noble et al. (2010) and
Penna et al. (2010), who investigated the behaviour of other diag-
nostics such as the angular momentum and shear stress and showed
that GRMHD discs calculated from single-loop initial conditions
generally deviate more strongly from the NT model compared to

Table 4. Spin estimates from
spectra obtained by excluding the
plunging region and setting the
four-velocity in the disc to its NT
value (second column) compared
with the original spin estimates
from Table 1 (third column).

a∗ = 0.9, i = 75◦ 0.92 0.93
a∗ = 0.9, i = 45◦ 0.91 0.91
a∗ = 0, i = 75◦ 0.13 0.15

discs obtained from multi-loop initial conditions. Penna et al. (2010)
argued that the multi-loop case is more natural since it better mim-
ics disc turbulence, whereas the one-loop case might introduce an
artificial long-range radial coherence in the solution.

The errors in the spin estimates could be due to a number of
reasons: (1) The disc emissivity profile outside the ISCO is different
in the simulations compared to the NT model, as Fig. 1 shows; (2)
the simulations have some radiation coming from the plunging
region inside the ISCO and (3) even outside the plunging region,
the radial component of the gas four-velocity is not negligible. To
find out which of these is the dominant effect, we calculated some
spectra from the simulated discs by excluding the region inside the
ISCO and setting the gas velocity outside the ISCO to its NT value.
Any residual differences in the spin estimates would solely be due
to (1).

The results are shown in Table 4. We see that spin estimates ob-
tained from the GRMHD simulations are still significantly different
from the true values. This shows that the dominant reason for the
errors in the spin estimates is the fact that, even outside the ISCO,
the disc emissivity profile in the simulations is different from the
NT profile; more specifically, that the peak of the profile is shifted
to smaller radii, as mentioned in Section 2. We should note, how-
ever, that for discs thicker than those considered in this work by
about a factor of 2 or more, the effect of the plunging region is
important. This follows from the finding of Penna et al. (2010) that
deviations of the GRMHD simulations from the NT model increase
with increasing disc thickness.

3.1 Effective accretion rates of the GRMHD models

The GRMHD models that we have used in this study make use
of dimensionless quantities and do not include detailed radiation
transfer. Hence there is no direct way of estimating the physical mass
accretion rate (g s−1) or the true radiative luminosity (erg s−1) of the
models. To estimate these quantities, we use an indirect method in
which we compare the vertical thicknesses of the simulated discs
against physical disc models that do include radiation transfer and
radiation pressure and solve for the vertical disc structure.

We use two models for this comparison. One is a semi-analytical
model of a slim disc (S ↪adowski et al. 2011) which goes beyond
the NT model by including the effect of energy advection in the
radial equations. At each radius r, the model solves the condition
of vertical hydrostatic equilibrium and includes radiative transfer
approximately. The other model (Davis et al. 2005) assumes the NT
model for the radial structure but carries out a careful and detailed
computation of radiation transfer, including non-local thermody-
namic equilibrium effects, at each r. This model is identical to the
XSPEC model BHSPEC (Davis & Hubeny 2006). Each of these models
treats some part of the physics very well, but neither has all the
ingredients one would like to include, viz. advection, full radiative
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Figure 6. Profiles of |h/r| for a∗ = 0 from the slim-disc model of S ↪adowski
et al. (2011) (solid lines) and the detailed radiative transfer model BHSPEC

of Davis & Hubeny (2006) (dashed lines) for luminosities L/LEdd = 0.3,
0.4, 0.5 (bottom to top in each panel), compared with the profile obtained
from the GRMHD simulation (dotted lines). The top panel shows the density
scaleheight |h| = ∫

ρ |z| dz/
∫

ρ dz, while the bottom panel shows the rms
height hrms = (

∫
ρ z2 dz/

∫
ρ dz)1/2.

transfer, magnetic fields, deviations from hydrostatic equilibrium,
self-irradiation, etc.

Fig. 6 shows the disc thickness as a function of r for a∗ = 0,
as predicted by the slim-disc model (solid lines, corresponding to
L/LEdd = 0.3, 0.4, 0.5, bottom to top) and BHSPEC (dashed lines,
same set of luminosities). These curves should be compared with
the disc thickness in the GRMHD simulation (dotted lines). The top
panel shows the density scaleheight |h| = ∫

ρ |z| dz/
∫

ρ dz, while
the bottom panel shows the rms height hrms = (

∫
ρ z2 dz/

∫
ρ dz)1/2.

At radii close to the ISCO, the slim disc and BHSPEC models
indicate that the disc thickness plunges to small values, whereas the
GRMHD simulation shows a much smaller decrease. We believe
there are at least three reasons for this discrepancy: (i) the GRMHD
simulations cool the gas by forcing it towards a constant entropy,
which may not be justified in the plunging region; (ii) the simulated
GRMHD disc includes magnetic fields whose pressure provides
additional support in the vertical direction, whereas the other two
models do not and (iii) the simulated disc begins to deviate from
hydrostatic equilibrium as the radial velocity becomes large near
the ISCO and the gas has less time to reach equilibrium, whereas
the other models hardwire the condition of hydrostatic equilibrium
at all radii. We estimate that the last two are only important well
inside the ISCO, however, while the discrepancy sets in already at
larger radii. These are interesting issues which we hope to explore
in the future. For the purposes of this section, we simply ignore the
region of the simulation near the ISCO.

Table 5. Spin estimates for a∗ = 0 from GRMHD
simulations of a thicker disc (|h/r| = 0.09) com-
pared with those for the thinner (|h/r| = 0.05) disc
shown in Table 1.

|h/r| L/LEdd i = 15◦ i = 45◦ i = 75◦

0.05 0.5 0.08 0.10 0.15
0.09 0.9 0.08 0.19 0.50

For the comparisons described here, we select a radius of r =
12M = 2rISCO, which is well outside the ISCO, and determine the
luminosities at which the slim disc and BHSPEC models give the
same disc thickness as we obtain in the simulated disc. We see from
Fig. 6 that the thickness measure |h/r| ∼ 0.05 in the simulated
GRMHD disc corresponds to L/LEdd ∼ 0.5 according to the slim-
disc model and ∼0.4 according to BHSPEC. A comparison of the
thickness measure hrms/r gives slightly larger values of L/LEdd.
Similar analysis (again at r = 2rISCO) for a∗ = 0.7, 0.9 and 0.98
shows that L/LEdd ∼ 0.4, 0.5 and 0.7 respectively according to
the slim-disc model, and 0.4, 0.4 and 0.6 respectively according to
BHSPEC.

The above luminosities are much higher than the typical luminosi-
ties (L/LEdd < 0.3) at which black hole binary spectra are analysed
for spin determination using the continuum-fitting method (from
Fig. 6, this corresponds to |h/r| � 0.03). Therefore, the errors in
the spin determination quoted in Section 3 are not directly ap-
plicable to observations. At lower luminosities, the accretion disc
would be thinner, as Fig. 6 shows. Due to computational resource
requirements, it is not currently possible for us to perform GRMHD
simulations for discs thinner than those presented here. What we
can do instead is to scale the results from the simulations to more
realistic thinner discs at lower luminosities. Table 5 compares the
spins obtained from two GRMHD simulations corresponding to
a∗ = 0, one with |h/r| = 0.05 (which we have focused on so far)
and another with |h/r| = 0.09. We see that the error in the spin
estimate is much larger for the latter model. Thus, it is clear that
at the lower luminosities that are interesting from an observational
point of view, the errors in the spin estimates would be significantly
smaller than those in Table 1.

As an aside, we note that McClintock et al. (2006) calculated the
height of the disc photosphere as a function of radius for an NT
disc (see fig. 17 in their paper). The disc heights they quote are
larger than the density scaleheights shown in Fig. 6 by roughly a
factor of 2–3. We have calculated the location of the photosphere
corresponding to the slim disc and BHSPEC models, and find that
they agree fairly well with the values obtained by McClintock et al.
(2006).

3.2 Effect of a finite photospheric height

So far we have been calculating spectra using equatorial profiles
of the emitted flux F(r) and the fluid four velocity uμ(r), which
are obtained, as mentioned in Section 2, by vertically integrating
the GRMHD simulated disc structure. This integration effectively
collapses the disc into the equatorial plane, which is where the disc
emission is assumed to originate from. The errors in the spin esti-
mates quoted above have therefore been purely due to the departure
of the equatorial flux and fluid velocity from their NT values. In
reality, however, the observed disc emission comes from the pho-
tosphere, which is at a finite height above the equatorial plane. The
effect of this on the spin estimates needs to be checked.
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Table 6. Spin estimates from spectra calculated using a finite
photospheric height for the disc (|hphot/r| = 0.2) for both NT and
simulated disc temperature profiles, at selected values of spin and
inclination.

NT disc Simulated Simulated disc
disc (original estimates

from Table 1)

a∗ = 0.9, i = 75◦ 0.88 0.90 0.93
a∗ = 0.9, i = 45◦ 0.89 0.90 0.91
a∗ = 0, i = 75◦ −0.05 0.09 0.15

The method we use for doing this is very crude; our only goal
here is to find out whether or not this effect could be important. The
slim disc and BHSPEC models mentioned above, and the calculations
of McClintock et al. (2006), show that the photosphere height is
about 2–3 scaleheights. Since we want to see how large the effect
of off-mid-plane emission could possibly be, we choose a larger
photosphere height: hphot/r ∼ 4|h/r|, where |h/r| is the disc half-
thickness measured at one scaleheight above the disc mid-plane. We
then repeat our ray-tracing computation, but following the geodesics
until they hit the photosphere instead of the equatorial plane [the
photosphere as defined above corresponds to θ = π/2 − δ, where
δ = tan −1(hphot/r)]. Finally, we assume that the flux and gas four-
velocity profiles at the point of emission are given by their equatorial
values F(r) and uμ(r), enabling us to calculate the spectra. Table 6
indicates that the effect on the estimates of a∗ may be significant at
high spins. However, it is encouraging to note that the errors in the
spin estimates decrease when we use a finite photospheric height.

We should also note that Li et al. (2010) find a much larger
effect on the spin estimates when they take the effect of a finite
photospheric height into account. We believe this is due to the fact
that the |h/r| profile in their analysis drops relatively sharply at
small radii, like the profiles from the slim disc model and BHSPEC

shown in Fig. 6. This disc geometry leads to self-shadowing of the
disc. For our analysis in this subsection, on the other hand, we have
chosen a constant |h/r|. Even if we were to use the |h/r| profile from
the GRMHD simulations, we would not expect to see significant
self-shadowing, since the |h/r| profile in the simulated model is
nearly constant with radius (Fig. 6).

4 A COM PA R ISON O F O BSERVATIONA L
A N D M O D E L - D E P E N D E N T E R RO R S

The obvious question at this point is how big the errors in the spin
estimates listed in Table 1 are compared with the observational un-
certainties in spin determination. We address this question in this
section. The spins of eight stellar mass black holes have been mea-
sured so far using the continuum-fitting method. The observational
error estimates for the first four (see Shafee et al. 2006 for GRO
J1655−40 and 4U 1543−47, Davis et al. 2006 for LMC X-3 and

McClintock et al. 2006 for GRS 1915+105) are very approximate,
and we disregard these results here. In more recent work, the princi-
pal sources of observational errors, as well as the uncertainties in the
key model parameters (e.g. the viscosity parameter α), have been
treated in detail. Moreover, in a recent paper on XTE J1550−564,
Steiner et al. (2010b) have exhaustively explored many additional
sources of error (see their table 3 and Appendix A). The upshot of
the work to date is that in every case the uncertainty in a∗ is com-
pletely dominated by the errors in three key dynamical parameters
that are input when fitting the X-ray spectral data (McClintock et al.
2006). These parameters are the distance D, the black hole mass
M and the inclination of the inner disc i (which is assumed to be
aligned with the orbital angular momentum vector of the binary; Li,
Narayan & McClintock 2009). In order to determine the error in a∗
due to the combined uncertainties in D, M and i, Monte Carlo simu-
lations are performed assuming that these parameters are normally
and independently distributed (e.g. Gou et al. 2009).

Table 7 gives selected observational data for four black holes (all
of these have been subjected to the rigorous error analysis described
above): the inclination angle, which has an important effect on the
model results (Tables 1–6); the spin parameter; the absolute and
fractional errors in rISCO (compare Table 2); and the luminosity.
All errors are quoted at the 68 per cent level of confidence. Note
that the values of a∗ range widely from ∼0 to ∼0.9. As a rough
characterization, the uncertainties in the values of a∗ are �a∗ ∼
±0.05 for the rapidly spinning pair of black holes and �a∗ ∼ ±0.2
for the slowly spinning pair. The corresponding fractional errors
in rISCO range from approximately 10 to 20 per cent. Comparing
the fractional errors in rISCO in Table 7 with the closest counterpart
results in Table 2 (i.e. closest matches for i and a∗), we find that
the error in the NT model is in all cases less than the observational
error: A0620−00, 5.4 versus 11.5 per cent; XTE J1550−564, 8.2
versus 17.9 per cent; M33 X-7, 9.0 versus 10.7 per cent and LMC
X-1, 1.9 versus 20.5 per cent.

Furthermore, the estimates of the modelling error due to devi-
ations from the NT model obtained in this paper are very likely
overestimates because the GRMHD simulation results necessar-
ily correspond to relatively luminous discs: L/LEdd = 0.4 − 0.7,
whereas the observed luminosities are typically only L/LEdd ∼ 0.15
(Table 7) and are strictly limited to L/LEdd < 0.30 (McClintock
et al. 2006). Because the NT model improves as the thickness and
luminosity of the disc decrease (Table 5), we conclude that use of
the NT thin-disc model does not limit our accuracy. Rather, it is
the uncertainties in the input parameters D, M and i that strongly
dominate the error in a∗.

5 C O N C L U S I O N S A N D D I S C U S S I O N

The main conclusion of this paper is that observational errors in
current measurements of black hole spin by the continuum-fitting
method dominate over the errors incurred by using the idealized

Table 7. Data for four black holes. The entries are the number of spectra analysed, inclination angle, spin parameter, the
approximate/symmetrized absolute and fractional errors in rISCO, and the Eddington-scaled luminosity.

Black Hole No. i (◦) a∗ �r(�r/r) L/LEdd Reference

A0620–00 1 51.0 ± 0.9 0.12 ± 0.19 ±0.65(11.5 per cent) 0.11 Gou et al. (2010)
XTE J1550−564 45a 74.7 ± 3.8 0.34+0.20

−0.28 ±0.86(17.9 per cent) 0.05–0.30 Steiner et al. (2010b)
M33 X-7 15 74.6 ± 1.0 0.84 ± 0.05 ±0.29(10.7 per cent) 0.07–0.11 Liu et al. (2008, 2010)
LMC X-1 18 36.4 ± 2.0 0.92+0.05

−0.07 ±0.43(20.5 per cent) 0.15–0.17 Gou et al. (2009)

a Typical value: number of spectra analysed varies depending on details of data selection (see Steiner et al. 2010b).
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NT model. We reached this conclusion by using 3D GRMHD sim-
ulations of thin discs to obtain realistic disc temperature profiles,
then calculating the corresponding spectra, and finally fitting these
spectra using the standard XSPEC model KERRBB. For disc thicknesses
|h/r| ∼ 0.04–0.08, the errors in a∗ are up to about 0.2, depending
on the inclination, for a non-spinning black hole, and up to about
0.1, 0.03 and 0.01 for black holes with spins of 0.7, 0.9 and 0.98,
respectively (Table 1). The errors in the spin estimates are partic-
ularly large at low spins and high inclinations, e.g. we find a spin
estimate of 0.15 for a non-spinning black hole viewed at an incli-
nation angle of 75◦. The results are quite close to those obtained by
Reynolds & Fabian (2008) for the iron line fitting method (see fig. 5
of their paper). Interestingly, we find that the fitted accretion rates
are correct to within a few per cent.

A new and important contribution in this paper is that we establish
via the slim-disc and BHSPEC models an approximate correspondence
between the disc thickness as calculated from GRMHD simulations
(Section 2.1) and the key disc observable L/LEdd (Section 3.1).
Even though the simulated discs considered in this paper are geo-
metrically quite thin, |h/r| ∼ 0.04–0.08, nevertheless it turns out
that such discs correspond to fairly high luminosities, L/LEdd ∼
0.4–0.7. For comparison, in observational work based on the
continuum-fitting method, the data-selection criterion L/LEdd < 0.3
(McClintock et al. 2006) is generally employed (which, from Fig. 6,
corresponds to |h/r| � 0.03). The validity and usefulness of this
criterion can be best judged by examining the results for 411 obser-
vations of LMC X-3 in Steiner et al. (2010a, see their figs 2 and 3).
For L/LEdd < 0.3, the inner disc radius rin is very nearly constant,
rising only slightly at luminosities above L/LEdd ≈ 0.2. However,
rin increases quite abruptly as the luminosity exceeds 30 per cent of
Eddington. Remarkably, at these higher luminosities there is little
scatter in the data and the increase in rin is smooth and systematic.

It is difficult to say at this stage what the reason is for the above
increase in the inner disc radius above the critical luminosity of
∼0.3LEdd. Both the GRMHD and the slim-disc models predict that
the inner disc radius should decrease (see the discussion of the
radiation edge in Abramowicz et al. 2010).8 On the other hand,
Li et al. (2010) were able to reproduce the observed increase by
considering self-shadowing of the disc as a result of the off-mid-
plane location of the disc photosphere. Interestingly, Abramowicz
et al. (2010) find that the inner radius of the disc is fairly close to
the NT value for luminosities L � 0.3LEdd, and that the inner edge
decreases quite abruptly at higher values of Ṁ . This, combined
with the observed behaviour of rin in LMC X-3, may be a hint that
something qualitatively different happens at L/LEdd ≈ 0.3; perhaps
energy advection or disc self-shadowing becomes suddenly more
relevant.

One firm conclusion can be drawn from the results presented in
this paper. Since Table 5 indicates that the modelling error decreases
as the disc thickness decreases, whatever the behaviour of rin may be
above L/LEdd ≈ 0.3, at luminosities appropriate to the continuum-
fitting method (L < 0.3LEdd), where the disc will be geometrically
very thin, the errors in the spin estimates will be even smaller than
those quoted in Table 1. Therefore, these errors are not a concern
for the continuum-fitting method of measuring black hole spin.

8 The caveat, as Abramowicz et al. (2010) point out, is that there are var-
ious ways of defining the inner edge of the accretion disc, and for some
definitions, the inner disc radius can increase when the luminosity increases
beyond ∼0.3LEdd if the viscosity parameter is large enough (α �0.2). How-
ever, the values of α that we see in our simulations are smaller, so this caveat
does not present any problem.

We must note one caveat about comparing the density scaleheight
from the GRMHD simulations with that from the slim-disc and
BHSPEC models: the latter models do not include magnetic pressure.
The increase in the photosphere height due to magnetic pressure
could be as large as a factor of 2 (Hirose, Krolik & Stone 2006),
although other studies have found more modest changes (Blaes et al.
2006; Davis et al. 2009).
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A P P E N D I X A : MATC H I N G A G R M H D MO D E L
TO T H E PAG E A N D T H O R N E S O L U T I O N

Page & Thorne (1974, hereafter PT) define in their equations (31a,b)
two quantities: (i) f (r), which is proportional to the local disc flux
Fcom(r) emitted from one side of the disc, as measured in the co-
moving frame of the fluid,9 and (ii) w(r), which is proportional to
the shear stress Wr

φ :

f (r) = 4πrFcom/Ṁ, (A1)

w(r) = 2πrWr
φ/Ṁ. (A2)

These quantities enter the angular momentum and energy conser-
vation laws via (see PT, equations 32a,b)

(L† − w),r = f L†, (A3)

(E† − �w),r = f E†, (A4)

where L†(r), E†(r) and �(r) are the specific angular momentum,
specific energy-at-infinity and the angular velocity. Equations (A3)
and (A4) lead to the further relation (PT, equation 33):

f = −�,r (E† − �L†)−1w. (A5)

9 The procedure for transforming the flux between the BL and comoving
frames is described in Appendix B2.

For a thin accretion disc, PT show that f has a general solution
of the form:

f (r) = −�,r (E† − �L†)−2

[∫
(E† − �L†)L†

,rdr + C

]
, (A6)

where C is an integration constant. They assume that the stress
vanishes at the ISCO, and thereby determine the value of C. They
then obtain the following particular solution:

fPT(r) = −�,r (E† − �L†)−2

∫ r

rISCO

(E† − �L†)L†
,rdr. (A7)

Equation (15n) in PT gives an explicit analytical expression for
f PT(r).

We are interested in the following more general problem. We
have a GRMHD numerical solution of a thin disc that has reached
inflow equilibrium out to some radius rie (defined in Penna et al.
2010). Beyond this radius, however, we cannot trust the numerical
results, so we would like to match our simulation model to the PT
solution. This will allow us to extrapolate the simulation beyond rie

and even beyond the radial range of the numerical grid. We wish to
avoid the particular solution f PT given above since that assumes zero
stress at the ISCO. Instead, we fit for the value of the integration
constant C using the simulation. We also redefine the constant C
slightly so that the fitting is made at rie rather than rISCO.

Let us write equation (A6) as follows,

f (r) = −�,r (E† − �L†)−2

[∫ r

rie

(E† − �L†)L†
,rdr + C

]
,

r ≥ rie,

(A8)

where the new constant C is to be determined from the simulation
at r = rie. We can write∫ r

rie

(E† − �L†)L†
,rdr =

∫ r

rISCO

(E† − �L†)L†
,rdr

−
∫ rie

rISCO

(E† − �L†)L†
,rdr

(A9)

=
[

(E† − �L†)2

−�,r

]
r

fPT(r)

−
[

(E† − �L†)2

−�,r

]
rie

fPT(rie).

(A10)

Substituting in equation (A8), we obtain the result we seek:

f (r) = fPT(r) − [(E† − �L†)2/�,r ]rie

[(E† − �L†)2/�,r ]r
fPT(rie)

− �,r

(E†−�L†)2 C, r ≥ rie,

(A11)

where

C = −
[

(E† − �L†)2

�,r

]
rie

4πrieFcom(rie)/Ṁ. (A12)

Except for Fcom(rie)/Ṁ , the local disc flux of the simulation at r =
rie, all the other quantities are obtained from the idealized PT model
and can be evaluated at any r outside the matching radius rie. With
this matching procedure, the local disc flux from the converged
region of the simulation can be extrapolated to arbitrary radii.

The choice of the matching radius rie is an important issue. We
would like to use as large a radius as possible, while still staying
within the inflow equilibrium radius, but we need to ensure that the
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Figure A1. Similar figure to Fig. 1, except that the solid line for each spin in
Fig. 1 is replaced by a cluster of solid lines showing the luminosity profiles
for different values of the matching radius, rie/rISCO = 1.1, 1.2, 1.3, 1.4
(solid lines, top to bottom).

choice of the matching radius does not affect the luminosity profiles
d(L/Ṁ)/d(ln r) significantly. Fig. A1 shows the luminosity profiles
for a∗ = 0, 0.7, 0.9 and 0.98 (bottom to top). For each spin, the
cluster of solid lines shows the luminosity profiles for rie/rISCO =
1.1, 1.2, 1.3, 1.4, and the dashed line shows the NT profile. It is
clear that for all the models except a∗ = 0.98, the choice of the
matching radius has little effect on the luminosity profiles. This
turns out to be particularly true for rie/rISCO < 1.3, as a closer look
reveals. We therefore use rie = 1.3rISCO in those three models. The
a∗ = 0.98 model, however, did not attain inflow equilibrium out to a
sufficiently large radius. Its luminosity profiles therefore show more
sensitivity to the matching radius. Hence we choose rie = 1.2rISCO

for this model. This is a conservative choice, since it results in a
larger deviation from the NT luminosity. The predicted errors in the
spin estimates shown for this model in Table 1 are therefore likely
to be overestimates.

APPEN D IX B: TRANSFORMATION BETWEEN
T H E BOY E R – L I N D QU I S T A N D C O M OV I N G
FRAMES

B1 Transformation of vectors and one-forms

To transform the four-momentum, we need to find the orthonormal
basis of the comoving frame, which we do using the Gram–Schmidt
orthonormalization procedure as described in Beckwith, Hawley &
Krolik (2008) and Shcherbakov & Huang (2011). Let us denote the
comoving-frame basis vectors by e(ν) and the fluid four-velocity by
uμ. In the comoving frame, since the fluid is at rest, its four-velocity
u is equal to e(t). This is a coordinate-independent statement; it is
true in any frame. We can thus denote the components of the e(ν) in
the BL frame by

e
μ
(t) = uμ = (ut , ur , uθ , uφ),

e
μ
(r) = (λ3, λ4, 0, λ5),

e
μ
(θ) = (λ6, λ7, λ8, λ9),

e
μ
(φ) = (λ1, 0, 0, λ2),

(B1)

where the λi are determined by imposing orthonormality, i.e. that
e

μ
(ν)e

(ψ)
μ = δ

(ψ)
(ν) . (The index μ in e

μ
(ν) is lowered using the BL met-

ric gαβ , while the index (ν) is raised using the Minkowski metric

η(α)(β) = diag(−1, 1, 1, 1), since we want the comoving frame to be
locally flat as well.) The e

μ
(ν) are the components of the transforma-

tion matrix for four-vector components from the comoving frame
into the BL frame. Some algebra gives

e
μ
(t) = (ut , ur , uθ , uφ),

e
μ
(r) = (uru

t , −(utu
t + uφuφ), 0, uru

φ)/Nr,

e
μ
(θ) = (uθu

t , uθu
r , 1 + uθu

θ , uθu
φ)/Nθ ,

e
μ
(φ) = (uφ, 0, 0, −ut )/Nφ,

and its inverse

e(t)
μ = (−ut ,−ur, −uθ , −uφ),

e(r)
μ = (urut , −grr (utu

t + uφuφ), 0, uruφ)/Nr,

e(θ)
μ = (uθut , uθur , gθθ (1 + uθu

θ ), uθuφ)/Nθ ,

e(φ)
μ = −� sin2 θ (uφ, 0, 0, −ut )/Nφ,

with

N 2
r = −grr (utu

t + uφuφ)(1 + uθu
θ )

N 2
θ = gθθ (1 + uθu

θ )

N 2
φ = −(utu

t + uφuφ)� sin2 θ,

� = r2 + a2 − 2Mr. (B2)

Here, a is the (dimensionful) black hole spin: a ≡ a∗GM/c2.
The transformation laws for vectors and one-forms are then
given by

Xμ = e
μ
(ν)X

(ν), X(μ) = e(μ)
ν Xν,

Xμ = e(ν)
μ X(ν), X(μ) = eν

(μ)Xν. (B3)

B2 Transformation of the flux

To transform the radiation flux from the BL frame (which is what
the GRMHD simulations give) into the comoving frame of the fluid,
we use the following method. The comoving flux is defined as

Fcom = dEcom

dAcomdtcom
≡ dEcom

d3Vcom
, (B4)

where d3Vcom is the three-volume in the comoving frame. We first
relate the energy in the fluid frame to that in the BL frame. Let e�̃

be the energy emitted per unit solid angle in the comoving frame.
A ray of light emitted into a solid angle d�̃ in a direction (θ̃ , φ̃)
(where θ̃ is measured with respect to the normal to the disc, i.e. the
e(θ) direction, and the φ̃ = 0 direction is arbitrary) will then have
an energy-momentum four-vector given by

dp(μ) = e�̃d�̃(1, sin θ̃ sin φ̃, cos θ̃ , sin θ̃ cos φ̃), (B5)

or, lowering the index, and remembering that the metric in the
comoving frame is η(α)(β) = diag(−1, 1, 1, 1),

dp(μ) = e�̃d�̃(−1, sin θ̃ sin φ̃, cos θ̃ , sin θ̃ cos φ̃). (B6)

Transforming this into the BL frame, we get

dpμ = e(ν)
μ dp(ν). (B7)

The energy-at-infinity of that ray as measured in the BL frame
then is

dE = −dpt = −e(ν)
t dp(ν). (B8)
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The total energy emitted in all directions is

E =
∫

dE = −e(ν)
t

∫
dp(ν) (B9)

= −e(ν)
t

∫
d�̃e�̃(−1, sin θ̃ sin φ̃, cos θ̃ , sin θ̃ cos φ̃). (B10)

The emission profiles we are interested in are isotropic (e�̃ = con-
stant) or limb-darkened (e�̃ ∝ 2 + 3 cos θ̃ ). For both of these, the
second and fourth terms in the brackets vanish. The third term is
multiplied by e

(θ)
t ∝ uθ = 0 for the thin discs that we consider here,

for which the fluid velocity is purely in the equatorial plane. So we
are left with

E = −ut

∫
d�̃e�̃ = −utEcom. (B11)

Next, we need to transform the three-volume d3Vcom. Con-
sider first a four-volume in the BL frame bounded by dt,
dr, dθ and dφ. The proper four-volume

√−gdtdrdθdφ =
(
√−gtrφdtdrdφ)(

√
gθθ dθ ) is an invariant. (Here, g is the deter-

minant of the covariant BL metric, and gtrφ is the determinant of the
t − r − φ part of the metric.) Also, since the transformation into
the comoving frame of the fluid involves a boost perpendicular to the
θ -direction, the proper length in the θ -direction (which is the term
in the second set of brackets in the last expression) is also invariant.
[This can be checked explicitly by examining the transformation
of the vector Xμ = (0, 0, dθ , 0) into the comoving frame.] There-
fore, the proper three-volume

√−gtrφdtdrdφ is also invariant. We
therefore have

d3Vcom = √−gtrφdtdrdφ

= rdrdφdt in the equatorial plane.
(B12)

The comoving flux then becomes

Fcom = dE

(−ut )rdrdφdt
(B13)

= F

−ut

, (B14)

which is the required transformation for the flux.

APPENDI X C : R AY-TRACI NG GRI D

The grid in the image plane is generated using plane polar coor-
dinates (b, β). The radial grid points form a geometric series, bm

= b0qm, m = 0,. . ., Nb, where q is a number slightly larger than
unity. This gives us high resolution close to the centre of the im-
age plane, which is necessary for resolving the inner region of the
accretion disc. The spacing in the angular direction is linear: βn =
β0 + nδβ, n = 0,. . ., Nβ . In addition, the grid is ‘squeezed’ along
the direction defined by the projection of the black hole spin axis
on to the image plane (the ‘y’-axis), by an amount proportional to
cos i, to account for the inclination of the observer. Therefore, the
radial grid becomes a set of concentric ellipses; the Cartesian co-
ordinates of the grid vertices are xmn = bm cos βn, ymn = bm sin βn

cos i. We choose b0 = 1, which is inside the black hole shadow for
all spins and inclinations, i.e. it is small enough that any rays with b
< b0 fall into the black hole and can therefore be ignored. We also
choose bNb

= 10 000, which is large enough to correctly produce
the low-energy end of the spectrum in the energy range of interest
(0.1–10 keV).

The flux in equation (2) then becomes

Fobs = 1

D2

∫
Iν dx dy (C1)

= cos i

D2

∫
Iν b db dβ (C2)

= cos i

D2

∫
Iν b2 d(log b) dβ. (C3)

Since the values of log b and β are equally spaced, we can now use a
higher order integration method like the Simpson’s one-third rule to
perform the integration (see e.g. Abramowitz & Stegun 1972). This
gives considerably higher accuracy and faster convergence than a
naı̈ve approach that simply sums up the product of Iν in each grid
cell with the area of that cell.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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