332 research outputs found

    Shelling out for genomics

    Get PDF
    A report on the symposium 'Genomic and Proteomic Approaches to Crustacean Biology' held as part of the Society for Integrative and Comparative Biology 2006 Annual Meeting, Orlando, USA, 4-8 January 2006

    Seawater acidification more than warming presents a challenge for two Antarctic macroalgal-associated amphipods

    Get PDF
    Elevated atmospheric pCO2 concentrations are triggering seawater pH reductions and seawater temperature increases along the western Antarctic Peninsula (WAP). These factors in combination have the potential to influence organisms in an antagonistic, additive, or synergistic manner. The amphipods Gondogeneia antarctica and Paradexamine fissicauda represent prominent members of macroalgal-associated mesograzer assemblages of the WAP. Our primary objective was to investigate amphipod behavioral and physiological responses to reduced seawater pH and elevated temperature to evaluate potential cascading ecological impacts. For 90 d, amphipods were exposed to combinations of seawater conditions based on present ambient (pH 8.0, 1.5°C) and predicted end-of-century conditions (pH 7.6, 3.5°C). We recorded survival, molt frequency, and macroalgal consumption rates as well as change in wet mass and proximate body composition (protein and lipid). Survival for both species declined significantly at reduced pH and co-varied with molt frequency. Consumption rates in G. antarctica were significantly higher at reduced pH and there was an additive pH-temperature effect on consumption rates in P. fissicauda. Body mass was reduced for G. antarctica at elevated temperature, but there was no significant effect of pH or temperature on body mass in P. fissicauda. Exposure to the pH or temperature levels tested did not induce significant changes in whole body biochemical composition of G. antarctica, but exposure to elevated temperature resulted in a significant increase in whole body protein content of P. fissicauda. Our study indicates that while elevated temperature causes sub-lethal impacts on both species of amphipods, reduced pH causes significant mortality

    RXTE Spectral Observations of the 1996-97 Outburst of the Microquasar GRO J1655-40

    Get PDF
    Excellent coverage of the entire 16-month 1996-97 outburst cycle of GRO J1655-40 was provided by RXTE. We present a full spectral analysis of these data, which includes 52 PCA spectra from 2.5-20 keV and HEXTE spectra above 20 keV. We also include a nearly continuous ASM light curve with several intensity measurements per day. The data are interpreted in the context of the multicolor blackbody disk/power-law model. The source is observed in the very high, high/soft, and low/hard outburst states. During the very high state, the source exhibits intense hard flares on time scales of hours to days which are correlated with changes in both the fitted temperature and radius of the inner accretion disk. During the high/soft state, the spectrum is dominated by the soft thermal emission from the accretion disk with spectral parameters that suggest approximately constant inner disk radius and temperature. We find that a tight relationship exists between the observed inner radius of the disk and the flux in the power-law component. During intense hard flares, the inner disk radius is observed to decrease by as much as a factor of three on a time scale of days. The apparent decrease of the inner disk radius observed during the flares may be due to the failure of the multicolor disk model caused by a steepening of the radial temperature profile in the disk coupled with increased spectral hardening and not physical changes of the inner disk radius. Assuming that our spectral model is valid during periods of weak power-law emission, our most likely value for the inner disk radius implies a* < 0.7. Such a low value for the black hole angular momentum is inconsistent with the relativistic frame dragging and the `diskoseismic' models as interpretations for the 300 Hz X-ray QPO seen during some of these RXTE observations.Comment: 34 pages including 9 figures and 3 tables. Accepted for publication in the Astrophysical Journal. Our interpretation of the data and the main conclusions have been significantly revise

    Passionate Scholars: Reforming Doctoral Education: A Research Project on Educational Outcomes and Processes

    Get PDF
    In this exploratory study, alumni of an innovative PhD program completed an open-ended self-administered questionnaire. They were asked to describe the intellectual, personal, and behavioral developments that they attributed to their graduate school experience, and aspects of their experience that they believed to have affected those changes. Findings indicated a wide array of changes in all areas

    Applying the logic of sample surveys to qualitative case studies: The case cluster method

    Get PDF
    This is the publisher's version, also available electronically from "http://www.jstor.org"

    The Low-Spin Black Hole in LMC X-3

    Full text link
    Building upon a new dynamical model for the X-ray binary LMC X-3, we measure the spin of its black hole primary via the continuum-fitting method. We consider over one thousand thermal-state RXTE X-ray spectra of LMC X-3. Using a large subset of these spectra, we constrain the spin parameter of the black hole to be spin = 0.21(+0.18,-0.22), 90% confidence. Our estimate of the uncertainty in spin takes into account a wide range of systematic errors. We discuss evidence for a correlation between a black hole's spin and the complexity of its X-ray spectrum.Comment: Submitted to ApJL, 5 pages emulateapj, 2 figures and 1 tabl

    Inferring the Inclination of a Black Hole Accretion Disk from Observations of its Polarized Continuum Radiation

    Full text link
    Spin parameters of stellar-mass black holes in X-ray binaries are currently being estimated by fitting the X-ray continuum spectra of their accretion disk emission. For this method, it is necessary to know the inclination of the X-ray-producing inner region of the disk. Since the inner disk is expected to be oriented perpendicular to the spin axis of the hole, the usual practice is to assume that the black hole spin is aligned with the orbital angular momentum vector of the binary, and to estimate the inclination of the latter from ellipsoidal modulations in the light curve of the secondary star. We show that the inclination of the disk can be inferred directly if we have both spectral and polarization information on the disk radiation. The predicted degree of polarization varies from 0% to 5% as the disk inclination changes from face-on to edge-on. With current X-ray polarimetric techniques the polarization degree of a typical bright X-ray binary could be measured to an accuracy of 0.1% by observing the source for about 10 days. Such a measurement would constrain the disk inclination to within a degree or two and would significantly improve the reliability of black hole spin estimates. In addition, it would provide new information on the tilt between the black hole spin axis and the orbital rotation axis of the binary, which would constrain any velocity kicks experienced by stellar-mass black holes during their formation.Comment: 46 pages, 8 figures, ApJ in pres

    Modeling the Optical-X-ray Accretion Lag in LMC X-3: Insights Into Black-Hole Accretion Physics

    Full text link
    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, 10-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the ASM and PCA detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ~2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light; accretion luminosity from the outer disk inferred from the time-lagged X-ray emission; and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter alpha decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ~50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ~50% of Eddington, the star lies fully in the shadow of the disk.Comment: Accepted in ApJ (12 pages long in emulateapj format

    Three-Dimensional Simulations of Magnetized Thin Accretion Disks around Black Holes: Stress in the Plunging Region

    Full text link
    We describe three-dimensional general relativistic magnetohydrodynamic simulations of a geometrically thin accretion disk around a non-spinning black hole. The disk has a thickness h/r∼0.05−0.1h/r\sim0.05-0.1 over the radial range (2−20)GM/c2(2-20)GM/c^2. In steady state, the specific angular momentum profile of the inflowing magnetized gas deviates by less than 2% from that of the standard thin disk model of Novikov & Thorne (1973). Also, the magnetic torque at the radius of the innermost stable circular orbit (ISCO) is only ∼2\sim2% of the inward flux of angular momentum at this radius. Both results indicate that magnetic coupling across the ISCO is relatively unimportant for geometrically thin disks.Comment: 4 pages, 4 figures, ApJL accepte
    • …
    corecore