22 research outputs found

    An empirical model approach for assessing soil organic carbon stock changes following biomass crop establishment in Britain

    Get PDF
    Land-use change (LUC) is a major influence on soil organic carbon (SOC) stocks and the global carbon cycle. LUC from conventional agricultural to biomass crops has increased in Britain but there is limited understanding of the effects on SOC stocks. Results from paired plot studies investigating site-specific effects document both increasing and decreasing SOC stocks over time. Such variation demonstrates the sensitivity of SOC to many factors including environmental conditions. Using a chronosequence of 93 biomass crop sites in England and Wales, mainly of 1–14 y age, empirical models were developed of SOC trajectory following LUC from arable and grassland to short rotation coppice (SRC) willow and Miscanthus production. SOC stocks were calculated for each site using a fixed sampling depth of 30 cm and changes were estimated by comparing with typical pre-conversion SOC stocks. Most LUCs had no demonstrable net effect on SOC stocks. An estimated net SOC loss of 45.2 ± 24.1 tonnes per hectare (±95% confidence intervals) occurred after 14 y following LUC from grassland to SRC willow. Soil texture and climate data for each site were included in multivariable models to assess the influence of different environmental conditions on SOC trajectory. In most cases the addition of explanatory variables improved the model fit. These models may provide some preliminary estimates of more region-specific changes in SOC following LUC. However, the model fit did not improve sufficiently as to provide a basis for adopting a more targeted LUC strategy for lignocellulosic biomass crop production

    What are the barriers and facilitators to effective health promotion in urgent and emergency care? A systematic review

    Get PDF
    Background: There are potential health gains such as reducing early deaths, years spent in ill-health and costs to society and the health and care system by encouraging NHS staf to use encounters with patients to help individuals signifcantly reduce their risk of disease. Emergency department staf and paramedics are in a unique position to engage with a wide range of the population and to use these contacts as opportunities to help people improve their health. The aim of this research was to examine barriers and facilitators to efective health promotion by urgent and emergency care staf. Methods: A systematic search of the literature was performed to review and synthesise published evidence relating to barriers and facilitators to efective health promotion by urgent and emergency care staf. Medical and social science databases were searched for articles published between January 2000 and December 2021 and the reference lists of included articles were hand searched. Two reviewers independently screened the studies and assessed risk of bias. Data was extracted using a bespoke form created for the study. Results: A total of 19 papers were included in the study. Four themes capture the narratives of the included research papers: 1) should it be part of our job?; 2) staf comfort in broaching the topic; 3) format of health education; 4) competency and training needs. Whilst urgent and emergency care staf view health promotion as part of their job, time restraints and a lack of knowledge and experience are identifed as barriers to undertaking health promotion interventions. Staf and patients have diferent priorities in terms of the health topics they feel should be addressed. Patients reported receiving books and leafets as well as speaking with a knowledgeable person as their preferred health promotion approach. Staf often stated the need for more training. Conclusions: Few studies have investigated the barriers to health promotion interventions in urgent and emergency care settings and there is a lack of evidence about the acceptability of health promotion activity. Additional research is needed to determine whether extending the role of paramedics and emergency nurses to include health promotion interventions will be acceptable to staf and patients

    Staff views on health promotion in emergency care settings – A qualitative scoping study

    Get PDF
    AimTo investigate the attitudes and barriers to health promotion practice behaviours amongst emergency nurses and ambulance service paramedics.MethodsWe used direct enquiry to recruit a convenience sample of emergency care staff (emergency department nurses and ambulance service paramedics). We conducted semi-structured interviews exploring the attitudes of staff. The interviews were analysed thematically.ResultsA total of six participants were interviewed: three emergency department nurses and three ambulance service paramedics. From the transcripts two main themes were identified: health promotion as part of the role of emergency care staff, and barriers to health promotion in the emergency care setting.ConclusionStaff interviewed were willing to undertake health promotion activities despite the barriers they discussed. There are opportunities for further development, and patients would benefit from a more structured approach to health promotion in these care settings

    Left and right ventricular longitudinal strain-volume/area relationships in elite athletes.

    Get PDF
    We propose a novel ultrasound approach with the primary aim of establishing the temporal relationship of structure and function in athletes of varying sporting demographics. 92 male athletes were studied [Group IA, (low static-low dynamic) (n = 20); Group IC, (low static-high dynamic) (n = 25); Group IIIA, (high static-low dynamic) (n = 21); Group IIIC, (high static-high dynamic) (n = 26)]. Conventional echocardiography of both the left ventricles (LV) and right ventricles (RV) was undertaken. An assessment of simultaneous longitudinal strain and LV volume/RV area was provided. Data was presented as derived strain for % end diastolic volume/area. Athletes in group IC and IIIC had larger LV end diastolic volumes compared to athletes in groups IA and IIIA (50 ± 6 and 54 ± 8 ml/(m(2))(1.5) versus 42 ± 7 and 43 ± 2 ml/(m(2))(1.5) respectively). Group IIIC also had significantly larger mean wall thickness (MWT) compared to all groups. Athletes from group IIIC required greater longitudinal strain for any given % volume which correlated to MWT (r = 0.4, p < 0.0001). Findings were similar in the RV with the exception that group IIIC athletes required lower strain for any given % area. There are physiological differences between athletes with the largest LV and RV in athletes from group IIIC. These athletes also have greater resting longitudinal contribution to volume change in the LV which, in part, is related to an increased wall thickness. A lower longitudinal contribution to area change in the RV is also apparent in these athletes

    Suppressing quantum errors by scaling a surface code logical qubit

    Full text link
    Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle (2.914%±0.016%2.914\%\pm 0.016\% compared to 3.028%±0.023%3.028\%\pm 0.023\%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7×10−61.7\times10^{-6} logical error per round floor set by a single high-energy event (1.6×10−71.6\times10^{-7} when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.Comment: Main text: 6 pages, 4 figures. v2: Update author list, references, Fig. S12, Table I

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Full text link
    Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors

    Non-Abelian braiding of graph vertices in a superconducting processor

    Full text link
    Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing

    The involvement of the low-oxygen-activated locus of Burkholderia cenocepacia in adaptation during cystic fibrosis infection

    Get PDF
    Chronic infection with opportunistic pathogens including Burkholderia cepacia complex (Bcc) is a hallmark of cystic fibrosis (CF). We investigated the adaptive mechanisms facilitating chronic lung infection in sequential Bcc isolates from two siblings with CF (P1 and P2), one of whom also experienced intermittent blood-stream infections (P2). We previously showed increased lung cell attachment with colonisation time in both P1 and P2. WGS analysis confirmed that the isolates are closely related. Twelve genes showed three or more mutations, suggesting these were genes under selection. Single nucleotide polymorphisms (SNVs) in 45 regulatory genes were also observed. Proteomic analysis showed that the abundance of 149 proteins increased over 61-months in sputum isolates, and both time- and source-related alterations in protein abundance between the second patient’s isolates. A consistent time-dependent increase in abundance of 19 proteins encoded by a low-oxygen-activated (lxa) locus was observed in both sets of isolates. Attachment was dramatically reduced in a B. cenocepacia K56-2Δlxa-locus deletion mutant, further indicating that it encodes protein(s) involved in host-cell attachment. Time-related changes in virulence in Galleria mellonella or motility were not observed. We conclude that the lxa-locus, associated with anoxic persistence in vitro, plays a role in host-cell attachment and adaptation to chronic colonization in the hypoxic niche of the CF lung
    corecore