225 research outputs found

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Development and testing of the BONES physical activity survey for young children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Weight-bearing and high intensity physical activities are particularly beneficial for stimulating bone growth in children given that bone responds favorably to mechanical load. While it is important to assess the contribution and impact of weight-bearing physical activity on health outcomes, measurement tools that quantify and provide information on these activities separately from overall physical activity are limited. This study describes the development and evaluation of a pictorial physical activity survey (PAS) that measures children's participation and knowledge of high-intensity, weight-bearing ("bone smart") physical activity.</p> <p>Methods</p> <p>To test reliability, two identical sets of the PAS were administered on the same day to 41 children (mean age 7.1 ± 0.8 years; 63% female) and compared. To test validity, accelerometry data from 40 children (mean age 7.7 ± 0.8 years; 50% female) were compared to data provided by the PAS. Agreements between categorical and ordinal items were assessed with Kappa statistics; agreements between continuous indices were assessed with Spearman's correlation tests.</p> <p>Results</p> <p>The subjects produced reliable results in all 10 physical activity participation items (κ range: 0.36-0.73, all p < 0.05), but less reliable in answering if the physical activities were "bone smart" (κ range: -0.04-0.66). Physical activity indices, including metabolic equivalent time and weight-bearing factors, were significant in test-retest analyses (Spearman's <it>r </it>range: 0.57-0.74, all p < 0.001). Minutes of very vigorous activity from the accelerometer were associated with the self-reported weight-bearing activity, moderate-high, and high activity scores from the PAS (Spearman's <it>r </it>range: 0.47-0.48, all p < 0.01). However, accelerometer counts, counts per minute, and minutes of moderate-vigorous and vigorous activity were not associated with the PAS scores.</p> <p>Conclusions</p> <p>Together, the results of these studies suggest that the PAS has acceptable test-retest reliability, but limited validity for early elementary school children. This survey demonstrates a first step towards developing a questionnaire that measures high intensity, weight-bearing activity in schoolchildren.</p

    Larval Transport Modeling of Deep-Sea Invertebrates Can Aid the Search for Undiscovered Populations

    Get PDF
    Background: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. Conclusions/Significance: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.Irish Research Council for Science, Engineering and TechnologyScience Foundation Irelan

    Spiritual Well-Being and Depression in Patients with Heart Failure

    Get PDF
    BACKGROUND: In patients with chronic heart failure, depression is common and associated with poor quality of life, more frequent hospitalizations, and higher mortality. Spiritual well-being is an important, modifiable coping resource in patients with terminal cancer and is associated with less depression, but little is known about the role of spiritual well-being in patients with heart failure. OBJECTIVE: To identify the relationship between spiritual well-being and depression in patients with heart failure. DESIGN: Cross-sectional study. PARTICIPANTS: Sixty patients aged 60 years or older with New York Heart Association class II–IV heart failure. MEASUREMENTS: Spiritual well-being was measured using the total scale and 2 subscales (meaning/peace, faith) of the Functional Assessment of Chronic Illness Therapy—Spiritual Well-being scale, depression using the Geriatric Depression Scale—Short Form (GDS-SF). RESULTS: The median age of participants was 75 years. Nineteen participants (32%) had clinically significant depression (GDS-SF > 4). Greater spiritual well-being was strongly inversely correlated with depression (Spearman’s correlation −0.55, 95% confidence interval −0.70 to −0.35). In particular, greater meaning/peace was strongly associated with less depression (r = −.60, P < .0001), while faith was only modestly associated (r = −.38, P < .01). In a regression analysis accounting for gender, income, and other risk factors for depression (social support, physical symptoms, and health status), greater spiritual well-being continued to be significantly associated with less depression (P = .05). Between the 2 spiritual well-being subscales, only meaning/peace contributed significantly to this effect (P = .02) and accounted for 7% of the variance in depression. CONCLUSIONS: Among outpatients with heart failure, greater spiritual well-being, particularly meaning/peace, was strongly associated with less depression. Enhancement of patients’ sense of spiritual well-being might reduce or prevent depression and thus improve quality of life and other outcomes in this population

    Single-cell genome-wide association reveals a nonsynonymous variant in ERAP1 confers increased susceptibility to influenza virus

    Get PDF
    During pandemics, individuals exhibit differences in risk and clinical outcomes. Here, we developed single-cell high-throughput human in vitro susceptibility testing (scHi-HOST), a method for rapidly identifying genetic variants that confer resistance and susceptibility. We applied this method to influenza A virus (IAV), the cause of four pandemics since the start of the 20th century. scHi-HOST leverages single-cell RNA sequencing (scRNA-seq) to simultaneously assign genetic identity to cells in mixed infections of cell lines of European, African, and Asian origin, reveal associated genetic variants for viral burden, and identify expression quantitative trait loci. Integration of scHi-HOST with human challenge and experimental validation demonstrated that a missense variant in endoplasmic reticulum aminopeptidase 1 (ERAP1; rs27895) increased IAV burden in cells and human volunteers. rs27895 exhibits population differentiation, likely contributing to greater permissivity of cells from African populations to IAV. scHi-HOST is a broadly applicable method and resource for decoding infectious-disease genetics

    Family history of breast cancer and young age at diagnosis of breast cancer increase risk of second primary malignancies in women: a population-based cohort study

    Get PDF
    Among 152 600 breast cancer patients diagnosed during 1958–2000, there was a 22% increased risk of developing a second primary non-breast malignancy (standardised incidence ratio (SIR)=1.22; 95% confidence interval (CI): 1.19–1.24). The highest risk was seen for connective tissue cancer (SIR=1.78; 95% CI: 1.49–2.10). Increased risks were noted among women diagnosed with breast cancer before age 50. Oesophagus cancer and non-Hodgkin's lymphoma showed six- and four-fold higher risks, respectively, in women with a family history of breast cancer compared to those without in the ⩾10-year follow-up period

    Short and long term treatment of asthma with intravenous nutrients

    Get PDF
    BACKGROUND: Asthma is an increasing problem in this country and others. Although medications for the treatment of asthma abound and are improving, there are inherent risks and side effects with all of them. Intravenous magnesium has been employed in the treatment of acute asthma, but its use has not become universal, nor has it been studied for the treatment of chronic asthma. It is known to be a safe drug with minimal side effects. In this study, the author investigates the use of magnesium and other nutrients in the treatment of both acute and chronic asthma. METHODS: In this non-blinded outcome study, following informed consent, forty-three (43) randomly selected volunteer patients with both acute and chronic asthma were treated with IV infusions described herein. All patients were observed with spirometry 10 minutes post-infusion; two sub-groups of patients were also observed after multiple infusions over a short period of time (less than one month) and a longer period of time (average 5.8 months). Pulmonary function was analyzed by spirometric testing with pre- and post-infusion spirometric measurements with the pre/post group. For longer term (Trend) patients, baseline spirometry measurements were compared to spirometry measurements after patients had received multiple infusions over a period of time. Eight (8) patients were measured for both pre/post and Trend data. RESULTS: The 38 pre-infusion/post-infusion patients with acute and chronic asthma demonstrated an overall average improvement (percentage improvement in percent predicted) of 45%. The 13 patients measured for improvement over time (Trend data, average duration 5.82 months), demonstrated an overall average improvement (percentage improvement in percent predicted) of 57%. Of the 13 patients in the multiple infusion group, 9 patients who received longer-term therapy (average duration of 12.58 months) for chronic asthma demonstrated an overall average improvement of 95% (percentage improvement in percent predicted). CONCLUSION: The use of intravenous treatment with multiple nutrients, including magnesium, for acute and chronic asthma may be of considerable benefit. Pulmonary function improved progressively the longer patients received treatment

    Increasing the Depth of Current Understanding: Sensitivity Testing of Deep-Sea Larval Dispersal Models for Ecologists

    Get PDF
    Larval dispersal is an important ecological process of great interest to conservation and the establishment of marine protected areas. Increasing numbers of studies are turning to biophysical models to simulate dispersal patterns, including in the deep-sea, but for many ecologists unassisted by a physical oceanographer, a model can present as a black box. Sensitivity testing offers a means to test the models' abilities and limitations and is a starting point for all modelling efforts. The aim of this study is to illustrate a sensitivity testing process for the unassisted ecologist, through a deep-sea case study example, and demonstrate how sensitivity testing can be used to determine optimal model settings, assess model adequacy, and inform ecological interpretation of model outputs. Five input parameters are tested (timestep of particle simulator (TS), horizontal (HS) and vertical separation (VS) of release points, release frequency (RF), and temporal range (TR) of simulations) using a commonly employed pairing of models. The procedures used are relevant to all marine larval dispersal models. It is shown how the results of these tests can inform the future set up and interpretation of ecological studies in this area. For example, an optimal arrangement of release locations spanning a release area could be deduced; the increased depth range spanned in deep-sea studies may necessitate the stratification of dispersal simulations with different numbers of release locations at different depths; no fewer than 52 releases per year should be used unless biologically informed; three years of simulations chosen based on climatic extremes may provide results with 90% similarity to five years of simulation; and this model setup is not appropriate for simulating rare dispersal events. A step-by-step process, summarising advice on the sensitivity testing procedure, is provided to inform all future unassisted ecologists looking to run a larval dispersal simulation

    Elevated Plasma IL-6 Associates with Increased Risk of Advanced Fibrosis and Cholangiocarcinoma in Individuals Infected by Opisthorchis viverrini

    Get PDF
    Opisthorchis viverrini is considered among the most important of the food-borne trematodes due to its strong association with advanced periductal fibrosis and bile duct cancer (cholangiocarcinoma). We investigated the relationship between plasma levels of Interleukin (IL)-6 and the risk of developing advanced fibrosis and bile duct cancer from chronic Opisthorchis infection. We show that IL-6 circulates in plasma at concentrations 58 times higher in individuals with advanced fibrosis than age, sex, and nearest-neighbor matched controls and 221 times higher in individuals with bile duct cancer than controls. We also observed a dose-response relationship between increasing levels of plasma IL-6 and increasing risk of advanced fibrosis and bile duct cancer; for example, in age and sex adjusted analyses, individuals with the highest quartiles of plasma IL-6 had a 19 times greater risk of developing advanced periductal fibrosis and a 150 times greater risk of developing of bile duct cancer than individuals with no detectable level of plasma IL-6. Finally, we show that a single plasma IL-6 measurement has excellent positive predictive value for the detection of both advanced bile duct fibrosis and bile duct cancer in regions with high O. viverrini transmission. These data support our hypothesis that common mechanisms drive bile duct fibrosis and bile duct tumorogenesis from chronic O. viverrini infection. Our study also adds a unique aspect to the literature on circulating levels of IL-6 as an immune marker of hepatobiliary pathology by showing that high levels of circulating IL-6 in plasma are not related to infection with O. viverrini, but to the development of the advanced and often lethal pathologies resulting from chronic O. viverrini infection

    NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activation of microglia causes the production of proinflammatory factors and upregulation of NADPH oxidase (NOX) that form reactive oxygen species (ROS) that lead to neurodegeneration. Previously, we reported that 10 daily doses of ethanol treatment induced innate immune genes in brain. In the present study, we investigate the effects of chronic ethanol on activation of NOX and release of ROS, and their contribution to ethanol neurotoxicity.</p> <p>Methods</p> <p>Male C57BL/6 and NF-κB enhanced GFP mice were treated intragastrically with water or ethanol (5 g/kg, i.g., 25% ethanol w/v) daily for 10 days. The effects of chronic ethanol on cell death markers (activated caspase-3 and Fluoro-Jade B), microglial morphology, NOX, ROS and NF-κB were examined using real-time PCR, immunohistochemistry and hydroethidine histochemistry. Also, Fluoro-Jade B staining and NOX gp91<sup>phox </sup>immunohistochemistry were performed in the orbitofrontal cortex (OFC) of human postmortem alcoholic brain and human moderate drinking control brain.</p> <p>Results</p> <p>Ethanol treatment of C57BL/6 mice showed increased markers of neuronal death: activated caspase-3 and Fluoro-Jade B positive staining with Neu-N (a neuronal marker) labeling in cortex and dentate gyrus. The OFC of human post-mortem alcoholic brain also showed significantly more Fluoro-Jade B positive cells colocalized with Neu-N, a neuronal marker, compared to the OFC of human moderate drinking control brain, suggesting increased neuronal death in the OFC of human alcoholic brain. Iba1 and GFAP immunohistochemistry showed activated morphology of microglia and astrocytes in ethanol-treated mouse brain. Ethanol treatment increased NF-κB transcription and increased NOX gp91<sup>phox </sup>at 24 hr after the last ethanol treatment that remained elevated at 1 week. The OFC of human postmortem alcoholic brain also had significant increases in the number of gp91<sup>phox </sup>+ immunoreactive (IR) cells that are colocalized with neuronal, microglial and astrocyte markers. In mouse brain ethanol increased gp91<sup>phox </sup>expression coincided with increased production of O<sub>2</sub><sup>- </sup>and O<sub>2</sub><sup>- </sup>- derived oxidants. Diphenyleneiodonium (DPI), a NOX inhibitor, reduced markers of neurodegeneration, ROS and microglial activation.</p> <p>Conclusions</p> <p>Ethanol activation of microglia and astrocytes, induction of NOX and production of ROS contribute to chronic ethanol-induced neurotoxicity. NOX-ROS and NF-κB signaling pathways play important roles in chronic ethanol-induced neuroinflammation and neurodegeneration.</p
    corecore