188 research outputs found
The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies.
We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine Hα-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrow-band survey. These galaxies have star formation rates of 1-27 M⊙ yr-1 and are therefore representative of the typical high-redshift star-forming population. Our ˜kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionized gas is in large, rotating discs. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities. We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar-mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor of 2.5 between z = 2 and 0, whilst the rest-frame B-band luminosity has decreased by a factor of ˜ 6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B band of Δ(M/LB)/(M/LB)z=0 ˜ 3.5 between z = 1.5 and 0, with most of the evolution occurring below z = 1. We also use the spatial variation of [N II]/Hα to show that the metallicity of the ionized gas in these galaxies declines monotonically with galactocentric radius, with an average Δ log(O/H)/ΔR = -0.027 ± 0.005 dex kpc-1. This gradient is consistent with predictions for high-redshift disc galaxies from cosmologically based hydrodynamic simulations
Magnetic fields and Sunyaev-Zel'dovich effect in galaxy clusters
In this work we study the contribution of magnetic fields to the Sunyaev
Zeldovich (SZ) effect in the intracluster medium. In particular we calculate
the SZ angular power spectrum and the central temperature decrement. The effect
of magnetic fields is included in the hydrostatic equilibrium equation by
splitting the Lorentz force into two terms one being the force due to magnetic
pressure which acts outwards and the other being magnetic tension which acts
inwards. A perturbative approach is adopted to solve for the gas density
profile for weak magnetic fields (< 4 micro G}). This leads to an enhancement
of the gas density in the central regions for nearly radial magnetic field
configurations. Previous works had considered the force due to magnetic
pressure alone which is the case only for a special set of field
configurations. However, we see that there exists possible sets of
configurations of ICM magnetic fields where the force due to magnetic tension
will dominate. Subsequently, this effect is extrapolated for typical field
strengths (~ 10 micro G) and scaling arguments are used to estimate the angular
power due to secondary anisotropies at cluster scales. In particular we find
that it is possible to explain the excess power reported by CMB experiments
like CBI, BIMA, ACBAR at l > 2000 with sigma_8 ~ 0.8 (WMAP 5 year data) for
typical cluster magnetic fields. In addition we also see that the magnetic
field effect on the SZ temperature decrement is more pronounced for low mass
clusters ( ~ 2 keV). Future SZ detections of low mass clusters at few arc
second resolution will be able to probe this effect more precisely. Thus, it
will be instructive to explore the implications of this model in greater detail
in future works.Comment: 20 pages, 8 figure
Compton scattering beyond the impulse approximation
We treat the non-relativistic Compton scattering process in which an incoming
photon scatters from an N-electron many-body state to yield an outgoing photon
and a recoil electron, without invoking the commonly used frameworks of either
the impulse approximation (IA) or the independent particle model (IPM). An
expression for the associated triple differential scattering cross section is
obtained in terms of Dyson orbitals, which give the overlap amplitudes between
the N-electron initial state and the (N-1) electron singly ionized quantum
states of the target. We show how in the high energy transfer regime, one can
recover from our general formalism the standard IA based formula for the cross
section which involves the ground state electron momentum density (EMD) of the
initial state. Our formalism will permit the analysis and interpretation of
electronic transitions in correlated electron systems via inelastic x-ray
scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur
Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations
We use the Galaxies–Intergalactic Medium Interaction Calculation (GIMIC) suite of cosmological hydrodynamical simulations to study the global structure and kinematics of stellar spheroids of Milky Way mass disc galaxies. Font et al. have recently demonstrated that these simulations are able to successfully reproduce the satellite luminosity functions and the metallicity and surface brightness profiles of the spheroids of the Milky Way and M31. A key to the success of the simulations is a significant contribution to the spheroid from stars that formed in situ. While the outer halo is dominated by accreted stars, stars formed in the main progenitor of the galaxy dominate at r≲ 30 kpc. In the present study, we show that this component was primarily formed in a protodisc at high redshift and was subsequently liberated from the disc by dynamical heating associated with mass accretion. As a consequence of its origin, the in situ component of the spheroid has different kinematics (namely net prograde rotation with respect to the disc) than that of the spheroid component built from the disruption of satellites. In addition, the in situ component has a flattened distribution, which is due in part to its rotation. We make comparisons with measurements of the shape and kinematics of local galaxies, including the Milky Way and M31, and stacked observations of more distant galaxies. We find that the simulated disc galaxies have spheroids of the correct shape (oblate with a median axial ratio of ∼0.6 at radii of ≲30 kpc, but note there is significant system-to-system scatter in this quantity) and that the kinematics show evidence for two components (due to in situ versus accreted), as observed. Our findings therefore add considerable weight to the importance of dissipative processes in the formation of stellar haloes and to the notion of a ‘dual stellar halo’
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
Constraints on dark matter self-interaction from the internal density profiles of X-COP galaxy clusters
The fundamental properties of the postulated dark matter (DM) affect the internal structure of gravitationally bound structures. In the cold dark matter paradigm, DM particles interact only via gravity. Their distribution is well represented by an Einasto profile with shape parameter α ≈ 0.18 in the smallest dwarf galaxies or the most massive galaxy clusters alike. Conversely, if DM particles self-interact via additional forces, we expect the mass density profiles of DM halos to flatten in their central regions, thereby increasing the Einasto shape parameter. We measured the structural properties of 12 massive galaxy clusters from observations of their hot gaseous atmosphere, using the X-ray observatory XMM-Newton, and of the Sunyaev-Zel’dovich effect using the Planck all-sky survey. After removing morphologically disturbed systems, we measured Einasto shape parameters with mean ⟨α⟩=0.19 ± 0.03 and intrinsic scatter σα = 0.06, which is in close agreement with the prediction of the cold dark matter paradigm. We used cosmological hydrodynamical simulations of cluster formation with self-interacting DM (BAHAMAS-SIDM) to determine how the Einasto shape parameter depends on the self-interaction cross section. We used the fitted relation to turn our measurements of α into constraints on the self-interaction cross section, which imply σ/m < 0.19 cm2 g−1 (95% confidence level) at collision velocity vDM − DM ∼ 1000 km s−1. This is lower than the interaction cross section required for DM self-interactions to solve the core-cusp problem in dwarf spheroidal galaxies, unless the cross section is a strong function of velocity
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies
We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine Hα-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrow-band survey. These galaxies have star formation rates of 1-27 M⊙ yr-1 and are therefore representative of the typical high-redshift star-forming population. Our ˜kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionized gas is in large, rotating discs. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities. We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar-mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor of 2.5 between z = 2 and 0, whilst the rest-frame B-band luminosity has decreased by a factor of ˜ 6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B band of Δ(M/LB)/(M/LB)z=0 ˜ 3.5 between z = 1.5 and 0, with most of the evolution occurring below z = 1. We also use the spatial variation of [N II]/Hα to show that the metallicity of the ionized gas in these galaxies declines monotonically with galactocentric radius, with an average Δ log(O/H)/ΔR = -0.027 ± 0.005 dex kpc-1. This gradient is consistent with predictions for high-redshift disc galaxies from cosmologically based hydrodynamic simulations
Large enhancement of deuteron polarization with frequency modulated microwaves
We report a large enhancement of 1.7 in deuteron polarization up to values of
0.6 due to frequency modulation of the polarizing microwaves in a two liters
polarized target using the method of dynamic nuclear polarization. This target
was used during a deep inelastic polarized muon-deuteron scattering experiment
at CERN. Measurements of the electron paramagnetic resonance absorption spectra
show that frequency modulation gives rise to additional microwave absorption in
the spectral wings. Although these results are not understood theoretically,
they may provide a useful testing ground for the deeper understanding of
dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar
files in poltar.uu, which also brings cernart.sty and crna12.sty files neede
- …
