188 research outputs found

    A 'Different Class'? Homophily and Heterophily in the Social Class Networks of Britpop

    Get PDF
    Social network analysis is increasingly recognised as a useful way to explore music scenes. In this article we examine the individuals who were the cultural workforce that comprised the 'Britpop' music scene of the 1990s. The focus of our analysis is homophily and heterophily to determine whether the clusters of friendships and working relationships of those who were ‘best connected’ in the scene were patterned by original social class position. We find that Britpop's 'whole network' is heterophilic but its 'sub-networks' are more likely to be social class homophilic. The sub-networks that remain heterophilic are likely to be united by other common experiences that brought individuals in the network to the same social spaces. We suggest that our findings on Britpop might be generalised to the composition of other music scenes, cultural workforces and aggregations of young people. Our study differs from research on, first, British ‘indie music’ and social class which focusses upon the construction, representation and performance of social location rather than the relationships it might shape (such as Wiseman-Trowse, 2008) and second, the pioneering social network analyses of music scenes (such as Crossley 2008; 2009; 2015; Crossley et. al 2014) which currently lacks the explicit emphasis on social class

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Human PTCHD3 nulls: rare copy number and sequence variants suggest a non-essential gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) can contribute to variable degrees of fitness and/or disease predisposition. Recent studies show that at least 1% of any given genome is copy number variable when compared to the human reference sequence assembly. Homozygous deletions (or CNV nulls) that are found in the normal population are of particular interest because they may serve to define non-essential genes in human biology.</p> <p>Results</p> <p>In a genomic screen investigating CNV in Autism Spectrum Disorders (ASDs) we detected a heterozygous deletion on chromosome 10p12.1, spanning the Patched-domain containing 3 (<it>PTCHD3</it>) gene, at a frequency of ~1.4% (6/427). This finding seemed interesting, given recent discoveries on the role of another Patched-domain containing gene (<it>PTCHD1</it>) in ASD. Screening of another 177 ASD probands yielded two additional heterozygous deletions bringing the frequency to 1.3% (8/604). The deletion was found at a frequency of ~0.73% (27/3,695) in combined control population from North America and Northern Europe predominately of European ancestry. Screening of the human genome diversity panel (HGDP-CEPH) covering worldwide populations yielded deletions in 7/1,043 unrelated individuals and those detected were confined to individuals of European/Mediterranean/Middle Eastern ancestry. Breakpoint mapping yielded an identical 102,624 bp deletion in all cases and controls tested, suggesting a common ancestral event. Interestingly, this CNV occurs at a break of synteny between humans and mouse. Considering all data, however, no significant association of these rare <it>PTCHD3 </it>deletions with ASD was observed. Notwithstanding, our RNA expression studies detected <it>PTCHD3 </it>in several tissues, and a novel shorter isoform for <it>PTCHD3 </it>was characterized. Expression in transfected COS-7 cells showed <it>PTCHD3 </it>isoforms colocalize with calnexin in the endoplasmic reticulum. The presence of a patched (Ptc) domain suggested a role for <it>PTCHD3 </it>in various biological processes mediated through the Hedgehog (Hh) signaling pathway. However, further investigation yielded one individual harboring a homozygous deletion (<it>PTCHD3 </it>null) without ASD or any other overt abnormal phenotype. Exon sequencing of <it>PTCHD3 </it>in other individuals with deletions revealed compound point mutations also resulting in a null state.</p> <p>Conclusion</p> <p>Our data suggests that <it>PTCHD3 </it>may be a non-essential gene in some humans and characterization of this novel CNV at 10p12.1 will facilitate population and disease studies.</p

    Novel Association Strategy with Copy Number Variation for Identifying New Risk Loci of Human Diseases

    Get PDF
    Copy number variations (CNV) are important causal genetic variations for human disease; however, the lack of a statistical model has impeded the systematic testing of CNVs associated with disease in large-scale cohort.Here, we developed a novel integrated strategy to test CNV-association in genome-wide case-control studies. We converted the single-nucleotide polymorphism (SNP) signal to copy number states using a well-trained hidden Markov model. We mapped the susceptible CNV-loci through SNP site-specific testing to cope with the physiological complexity of CNVs. We also ensured the credibility of the associated CNVs through further window-based CNV-pattern clustering. Genome-wide data with seven diseases were used to test our strategy and, in total, we identified 36 new susceptible loci that are associated with CNVs for the seven diseases: 5 with bipolar disorder, 4 with coronary artery disease, 1 with Crohn's disease, 7 with hypertension, 9 with rheumatoid arthritis, 7 with type 1 diabetes and 3 with type 2 diabetes. Fifteen of these identified loci were validated through genotype-association and physiological function from previous studies, which provide further confidence for our results. Notably, the genes associated with bipolar disorder converged in the phosphoinositide/calcium signaling, a well-known affected pathway in bipolar disorder, which further supports that CNVs have impact on bipolar disorder.Our results demonstrated the effectiveness and robustness of our CNV-association analysis and provided an alternative avenue for discovering new associated loci of human diseases

    Systematic Inference of Copy-Number Genotypes from Personal Genome Sequencing Data Reveals Extensive Olfactory Receptor Gene Content Diversity

    Get PDF
    Copy-number variations (CNVs) are widespread in the human genome, but comprehensive assignments of integer locus copy-numbers (i.e., copy-number genotypes) that, for example, enable discrimination of homozygous from heterozygous CNVs, have remained challenging. Here we present CopySeq, a novel computational approach with an underlying statistical framework that analyzes the depth-of-coverage of high-throughput DNA sequencing reads, and can incorporate paired-end and breakpoint junction analysis based CNV-analysis approaches, to infer locus copy-number genotypes. We benchmarked CopySeq by genotyping 500 chromosome 1 CNV regions in 150 personal genomes sequenced at low-coverage. The assessed copy-number genotypes were highly concordant with our performed qPCR experiments (Pearson correlation coefficient 0.94), and with the published results of two microarray platforms (95–99% concordance). We further demonstrated the utility of CopySeq for analyzing gene regions enriched for segmental duplications by comprehensively inferring copy-number genotypes in the CNV-enriched >800 olfactory receptor (OR) human gene and pseudogene loci. CopySeq revealed that OR loci display an extensive range of locus copy-numbers across individuals, with zero to two copies in some OR loci, and two to nine copies in others. Among genetic variants affecting OR loci we identified deleterious variants including CNVs and SNPs affecting ∼15% and ∼20% of the human OR gene repertoire, respectively, implying that genetic variants with a possible impact on smell perception are widespread. Finally, we found that for several OR loci the reference genome appears to represent a minor-frequency variant, implying a necessary revision of the OR repertoire for future functional studies. CopySeq can ascertain genomic structural variation in specific gene families as well as at a genome-wide scale, where it may enable the quantitative evaluation of CNVs in genome-wide association studies involving high-throughput sequencing

    Mobile health apps to facilitate self-care: a qualitative study of user experiences

    Get PDF
    Objective: Consumers are living longer, creating more pressure on the health system and increasing their requirement for self-care of chronic conditions. Despite rapidly-increasing numbers of mobile health applications (‘apps’) for consumers’ self-care, there is a paucity of research into consumer engagement with electronic self-monitoring. This paper presents a qualitative exploration of how health consumers use apps for health monitoring, their perceived benefits from use of health apps, and suggestions for improvement of health apps. Materials and Methods: ‘Health app’ was defined as any commercially-available health or fitness app with capacity for self-monitoring. English-speaking consumers aged 18 years and older using any health app for self-monitoring were recruited for interview from the metropolitan area of Perth, Australia. The semi-structured interview guide comprised questions based on the Technology Acceptance Model, Health Information Technology Acceptance Model, and the Mobile Application Rating Scale, and is the only study to do so. These models also facilitated deductive thematic analysis of interview transcripts. Implicit and explicit responses not aligned to these models were analyzed inductively.Results: Twenty-two consumers (15 female, seven male) participated, 13 of whom were aged 26–35 years. Eighteen participants reported on apps used on iPhones. Apps were used to monitor diabetes, asthma, depression, celiac disease, blood pressure, chronic migraine, pain management, menstrual cycle irregularity, and fitness. Most were used approximately weekly for several minutes per session, and prior to meeting initial milestones, with significantly decreased usage thereafter. Deductive and inductive thematic analysis reduced the data to four dominant themes: engagement in use of the app; technical functionality of the app; ease of use and design features; and management of consumers’ data. Conclusions: The semi-structured interviews provided insight into usage, benefits and challenges of health monitoring using apps. Understanding the range of consumer experiences and expectations can inform design of health apps to encourage persistence in self-monitoring

    The quest for genetic risk factors for Crohn's disease in the post-GWAS era

    Get PDF
    Multiple genome-wide association studies (GWASs) and two large scale meta-analyses have been performed for Crohn's disease and have identified 71 susceptibility loci. These findings have contributed greatly to our current understanding of the disease pathogenesis. Yet, these loci only explain approximately 23% of the disease heritability. One of the future challenges in this post-GWAS era is to identify potential sources of the remaining heritability. Such sources may include common variants with limited effect size, rare variants with higher effect sizes, structural variations, or even more complicated mechanisms such as epistatic, gene-environment and epigenetic interactions. Here, we outline potential sources of this hidden heritability, focusing on Crohn's disease and the currently available data. We also discuss future strategies to determine more about the heritability; these strategies include expanding current GWAS, fine-mapping, whole genome sequencing or exome sequencing, and using family-based approaches. Despite the current limitations, such strategies may help to transfer research achievements into clinical practice and guide the improvement of preventive and therapeutic measures

    Digital health behaviour change interventions targeting physical activity and diet in cancer survivors: a systematic review and meta-analysis

    Get PDF
    Purpose: The number of cancer survivors has risen substantially due to improvements in early diagnosis and treatment. Health behaviours such as physical activity (PA) and diet can reduce recurrence and mortality, and alleviate negative consequences of cancer and treatments. Digital behaviour change interventions (DBCIs) have the potential to reach large numbers of cancer survivors. Methods: We conducted a systematic review and meta-analyses of relevant studies identified by a search of Medline, EMBASE, PubMed and CINAHL. Studies which assessed a DBCI with measures of PA, diet and/or sedentary behaviour were included. Results: 15 studies were identified. Random effects meta-analyses showed significant improvements in moderate-vigorous PA (7 studies; mean difference (MD) = 41 minutes per week; 95% CI: 12, 71) and body mass index (BMI)/weight (standardised mean difference (SMD) = -0.23; 95% CI: -0.41, -0.05). There was a trend toward significance for reduced fatigue and no significant change in cancer-specific quality of life (QoL). Narrative synthesis revealed mixed evidence for effects on diet, generic QoL and self-efficacy and no evidence of an effect on mental health. Two studies suggested improved sleep quality. Conclusions: DBCIs may improve PA and BMI among cancer survivors and there is mixed evidence for diet. The number of included studies is small and risk of bias and heterogeneity was high. Future research should address these limitations with large, high-quality RCTs, with objective measures of PA and sedentary time. Implications for cancer survivors: Digital technologies offer a promising approach to encourage health behaviour change among cancer survivors
    corecore