77 research outputs found

    Benchmarking Aided Decision Making in a Signal Detection Task

    Get PDF
    Copyright © 2017 Human Factors and Ergonomics Society. Reprinted by permission of SAGE Publications.Objective: A series of experiments examined human operators’ strategies for interacting with highly (93%) reliable automated decision aids in a binary signal detection task. Background: Operators often interact with automated decision aids in a suboptimal way, achieving performance levels lower than predicted by a statistically ideal model of information integration. To better understand operators’ inefficient use of decision aids, we compared participants’ automation-aided performance levels with the predictions of seven statistical models of collaborative decision making. Method: Participants performed a binary signal detection task that asked them to classify random dot images as either blue or orange dominant. They made their judgments either unaided or with assistance from a 93% reliable automated decision aid that provided either graded (Experiments 1 and 3) or binary (Experiment 2) cues. We compared automation-aided performance with the predictions of seven statistical models of collaborative decision making, including a statistically optimal model and Robinson and Sorkin’s contingent criterion model. Results and Conclusion: Automation-aided sensitivity hewed closest to the predictions of the two least efficient collaborative models, well short of statistically ideal levels. Performance was similar whether the aid provided graded or binary judgments. Model comparisons identified potential strategies by which participants integrated their judgments with the aid’s. Application: Results lend insight into participants’ automation-aided decision strategies and provide benchmarks for predicting automation-aided performance levels

    Redundant-target processing is robust against changes to task load

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Monitoring visual displays while performing other tasks is commonplace in many operational environments. Although dividing attention between tasks can impair monitoring accuracy and response times, it is unclear whether it also reduces processing efficiency for visual targets. Thus, the current three experiments examined the effects of dual-tasking on target processing in the visual periphery. A total of 120 undergraduate students performed a redundant-target task either by itself (Experiment 1a) or in conjunction with a manual tracking task (Experiments 1b–3). Target processing efficiency was assessed using measures of workload resilience. Processing of redundant targets in Experiments 1–2 was less efficient than predicted by a standard parallel race model, giving evidence for limited-capacity, parallel processing. However, when stimulus characteristics forced participants to process targets in serial (Experiment 3), processing efficiency became super-capacity. Across the three experiments, dual-tasking had no effect on target processing efficiency. Results suggest that a central task slows target detection in the display periphery, but does not change the efficiency with which multiple concurrent targets are processed

    Neurexin-1 and Frontal Lobe White Matter: An Overlapping Intermediate Phenotype for Schizophrenia and Autism Spectrum Disorders

    Get PDF
    Background: Structural variation in the neurexin-1 (NRXN1) gene increases risk for both autism spectrum disorders (ASD) and schizophrenia. However, the manner in which NRXN1 gene variation may be related to brain morphology to confer risk for ASD or schizophrenia is unknown. Method/Principal Findings: 53 healthy individuals between 18–59 years of age were genotyped at 11 single nucleotide polymorphisms of the NRXN1 gene. All subjects received structural MRI scans, which were processed to determine cortical gray and white matter lobar volumes, and volumes of striatal and thalamic structures. Each subject’s sensorimotor function was also assessed. The general linear model was used to calculate the influence of genetic variation on neural and cognitive phenotypes. Finally, in silico analysis was conducted to assess potential functional relevance of any polymorphisms associated with brain measures. A polymorphism located in the 39 untranslated region of NRXN1 significantly influenced white matter volumes in whole brain and frontal lobes after correcting for total brain volume, age and multiple comparisons. Follow-up in silico analysis revealed that this SNP is a putative microRNA binding site that may be of functional significance in regulating NRXN1 expression. This variant also influenced sensorimotor performance, a neurocognitive function impaired in both ASD and schizophrenia. Conclusions: Our findings demonstrate that the NRXN1 gene, a vulnerability gene for SCZ and ASD, influences brai

    Comparing Measures of Sensitivity for Vigilance Tasks

    No full text

    Open data and code

    No full text
    Data and code linked from manuscrip

    Psychometric Curves Reveal Three Mechanisms of Vigilance Decrement

    No full text
    Materials and data for McCarley & Yamani (in press

    Shared Gaze Fails to Improve Team Visual Monitoring

    No full text
    Data and analysis scripts for McCarley, Leggett, and Enright (in press). Shared Gaze Fails to Improve Team Visual Monitoring. Human Factors
    • …
    corecore