8 research outputs found

    Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery

    Get PDF
    Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partially suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches involving the administration of 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offer the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutic applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors

    Isolated neutropenia as a rare but serious adverse event secondary to immune checkpoint inhibition

    Get PDF
    Background Compared to conventional chemotherapy, Immune checkpoint inhibitors (ICI) are known to have a distinct toxicity profile commonly identified as immune-related adverse events (irAEs). These irAEs that are believed to be related to immune dysregulations triggered by ICI can be serious and lead to treatment interruptions and in severe cases, precipitate permanent discontinuation. Isolated neutropenia secondary to ICI has been rarely documented in the literature and needs further description. We report a case of pembrolizumab related severe isolated neutropenia in a patient with metastatic non-small cell lung cancer. We were also able to obtain serial blood and plasma-based biomarkers for this patient during treatment and during neutropenia to understand trends that may correlate with the irAE. In addition we summarize important findings from other studies reporting on ICI related neutropenia. Case presentation A 74 years old Caucasian male treated with single-agent pembrolizumab for metastatic non-small cell lung cancer presented with fevers, chills, and an isolated neutrophil count (ANC) of 0 2 weeks after the fourth dose. In addition to antibiotics, due to the strong suspicion of this neutropenia being immune-mediated, he was started on 1 mg/kg of steroids and also received filgrastim to accelerate neutrophil recovery. Serial trends in C-reactive protein and certain other inflammatory cytokines demonstrated a corresponding rise at the time of neutropenia. Post recovery, his pembrolizumab was kept on hold. Eight weeks later he had a second episode of neutropenia which was again managed similar to the first episode. Despite permanent discontinuation of ICI after the first neutropenia, his disease showed an ongoing complete metabolic response on imaging. Our literature review reveals that hematological toxicities constitute < 1% irAEs with isolated neutropenia roughly accounting for one-fourth of the hematological irAEs. Based on the handful of ICI related neutropenia cases reported to date, we identified nivolumab to be the most common offender. The median number of ICI cycles administered before presenting with neutropenia was three, and the median time to recovery was approximately two weeks. All of these neutropenic episodes were ≥ grade 3 and led to permanent ICI discontinuation. Using immunosuppressive therapies in conjunction with granulocyte-colony stimulating factor was the most common strategy described to have favorable results. Conclusion Neutropenia as an isolated irAE secondary to ICI is rare but represents a severe toxicity that needs early recognition and can often result in treatment discontinuations. Careful monitoring of these patients with the prompt initiation of immunosuppressive and supportive measures to promote rapid recovery as well as prevent and treat infectious complications should be part of the management algorithms. Serial monitoring of blood and plasma-based biomarkers from more extensive studies may help in identifying patients at risk for irAEs and thus guide patient selection for ICI

    Evaluating the impact of hydroxychloroquine on mouse lymphocyte proliferation and cytokine production in vivo and in vitro

    No full text
    Summary: Immunomodulatory drugs can alter lymphocyte function. Hydroxychloroquine (HCQ) is prescribed for many autoimmune diseases and is under investigation as an anti-tumor autophagy inhibitor. Here, we describe a protocol to evaluate the influence of HCQ on lymphocyte function by measuring the in vitro and ex vivo proliferation and cytokine production. The protocol can provide insights into potential immunomodulatory effects of HCQ and can be used for assessing other medications' effects on lymphocyte functions.For complete details on the use and execution of this protocol, please refer to Wabitsch et al. (2021)

    Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population

    No full text
    Circulating antibodies (Ab) that specifically bind polyethylene glycol (PEG), a biocompatible polymer routinely used in protein and nanoparticle therapeutics, have been associated with reduced efficacy of and/or adverse reactions to therapeutics modified with or containing PEG. Unlike most antidrug antibodies that are induced following initial drug dosing, anti-PEG Ab can be found in treatment-naïve individuals (i.e., individuals who have never undergone treatment with PEGylated drugs but most likely have been exposed to PEG through other means). Unfortunately, the true prevalence, quantitative levels, and Ab isotype of pre-existing anti-PEG Ab remain poorly understood. Here, using rigorously validated competitive ELISAs with engineered chimeric anti-PEG monoclonal Ab standards, we quantified the levels of anti-PEG IgM and different subclasses of anti-PEG IgG (IgG1–4) in both contemporary and historical human samples. We unexpectedly found, with 90% confidence, detectable levels of anti-PEG Ab in ∼72% of the contemporary specimens (18% IgG, 25% IgM, 30% both IgG and IgM). The vast majority of these samples contained low levels of anti-PEG Ab, with only ∼7% and ∼1% of all specimens possessing anti-PEG IgG and IgM in excess of 500 ng/mL, respectively. IgG2 was the predominant anti-PEG IgG subclass. Anti-PEG Ab’s were also observed in ∼56% of serum samples collected during 1970–1999 (20% IgG, 19% IgM, and 16% both IgG and IgM), suggesting that the presence of PEG-specific antibodies may be a longstanding phenomenon. Anti-PEG IgG levels demonstrated correlation with patient age, but not with gender or race. The widespread prevalence of pre-existing anti-PEG Ab, coupled with high Ab levels in a subset of the population, underscores the potential importance of screening patients for anti-PEG Ab levels prior to administration of therapeutics containing PEG

    Adenosine A2a receptor inhibition increases the anti-tumor efficacy of anti-PD1 treatment in murine hepatobiliary cancers

    No full text
    Backgrounds &amp; Aims: The efficacy of immune checkpoint inhibitor (ICI) therapy for liver cancer remains limited. As the hypoxic liver environment regulates adenosine signaling, we tested the efficacy of adenosine A2a receptor (A2aR) inhibition in combination with ICI treatment in murine models of liver cancer. Methods: RNA expression related to the adenosine pathway was analyzed from public databases. Peripheral blood mononuclear cells of 13 patients with hepatocellular carcinoma (HCC) were examined by flow cytometry. The following murine cell lines were used: SB-1, RIL175, and Hep55.1c (liver cancer), CT26 (colon cancer), and B16–F10 (melanoma). C57BL/6 and BALB/c mice were used for orthotopic tumor models and were treated with SCH58261, an A2aR inhibitor, in combination with anti-PD1 therapy. Results: RNA expression of ADORA2A in tumor tissues derived from patients with HCC was higher than in tissues from other cancer types. A2aR+ T cells in peripheral blood from patients with HCC were highly proliferative after immunotherapy. Likewise, in an orthotopic murine model, A2aR expression on T cells increased following anti-PD1 treatment, and the expression of A2aR on T cells increased more in tumor-bearing mice compared with tumor-free mice. The combination of SCH58261 and anti-PD1 led to activation of T cells and reductions in tumor size in orthotopic liver cancer models. In contrast, SCH58261 monotherapy was ineffective in orthotopic liver cancer models and the combination was ineffective in the subcutaneous tumor models tested. CD4+ T-cell depletion attenuated the efficacy of the combination therapy. Conclusion: A2aR inhibition and anti-PD1 therapy had a synergistic anti-tumor effect in murine liver cancer models. Impact and implications: Adenosine A2a receptor (A2aR)-expressing T cells in the liver increased in tumor-bearing mice and after anti-PD1 treatment. The combination of an A2aR inhibitor and anti-PD1 treatment had potent anti-tumor effects in two murine models of orthotopic liver cancer. Adenosine A2a receptor blockade promotes immunotherapy efficacy in murine models, highlighting putative clinical benefits for advanced stage liver cancer patients

    Increased interleukin-6/C-reactive protein levels are associated with the upregulation of the adenosine pathway and serve as potential markers of therapeutic resistance to immune checkpoint inhibitor-based therapies in non-small cell lung cancer

    No full text
    Background Systemic immune activation, hallmarked by C-reactive protein (CRP) and interleukin-6 (IL-6), can modulate antitumor immune responses. In this study, we evaluated the role of IL-6 and CRP in the stratification of patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). We also interrogated the underlying immunosuppressive mechanisms driven by the IL-6/CRP axis.Methods In cohort A (n=308), we estimated the association of baseline CRP with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) in patients with NSCLC treated with ICIs alone or with chemo-immunotherapy (Chemo-ICI). Baseline tumor bulk RNA sequencing (RNA-seq) of lung adenocarcinomas (LUADs) treated with pembrolizumab (cohort B, n=59) was used to evaluate differential expression of purine metabolism, as well as correlate IL-6 expression with PFS. CODEFACS approach was applied to deconvolve cohort B to characterize the tumor microenvironment by reconstructing the cell-type-specific transcriptome from bulk expression. Using the LUAD cohort from The Cancer Genome Atlas (TCGA) we explored the correlation between IL-6 expression and adenosine gene signatures. In a third cohort (cohort C, n=18), plasma concentrations of CRP, adenosine 2a receptor (A2aR), and IL-6 were measured using ELISA.Results In cohort A, 67.2% of patients had a baseline CRP≥10 mg/L (CRP-H). Patients with CRP-H achieved shorter OS (8.6 vs 14.8 months; p=0.006), shorter PFS (3.3 vs 6.6 months; p=0.013), and lower ORR (24.7% vs 46.3%; p=0.015). After adjusting for relevant clinical variables, CRP-H was confirmed as an independent predictor of increased risk of death (HR 1.51, 95% CI: 1.09 to 2.11) and lower probability of achieving disease response (OR 0.34, 95% CI: 0.13 to 0.89). In cohort B, RNA-seq analysis demonstrated higher IL-6 expression on tumor cells of non-responders, along with a shorter PFS (p&lt;0.05) and enrichment of the purinergic pathway. Within the TCGA LUAD cohort, tumor IL-6 expression strongly correlated with the adenosine signature (R=0.65; p&lt;2.2e−16). Plasma analysis in cohort C demonstrated that CRP-H patients had a greater median baseline level of A2aR (6.0 ng/mL vs 1.3 ng/mL; p=0.01).Conclusions This study demonstrates CRP as a readily available blood-based prognostic biomarker in ICI-treated NSCLC. Additionally, we elucidate a potential link of the CRP/IL-6 axis with the immunosuppressive adenosine signature pathway that could drive inferior outcomes to ICIs in NSCLC and also offer novel therapeutic avenues

    Addressing challenges of heterogeneous tumor treatment through bispecific protein-mediated pretargeted drug delivery

    No full text
    Tumors are frequently characterized by genomically and phenotypically distinct cancer cell subpopulations within the same tumor or between tumor lesions, a phenomenon termed tumor heterogeneity. These diverse cancer cell populations pose a major challenge to targeted delivery of diagnostic and/or therapeutic agents, as the conventional approach of conjugating individual ligands to nanoparticles is often unable to facilitate intracellular delivery to the full spectrum of cancer cells present in a given tumor lesion or patient. As a result, many cancers are only partial suppressed, leading to eventual tumor regrowth and/or the development of drug-resistant tumors. Pretargeting (multistep targeting) approaches, which involves administering 1) a cocktail of bispecific proteins that can collectively bind to the entirety of a mixed tumor population followed by 2) nanoparticles containing therapeutic and/or diagnostic agents that can bind to the bispecific proteins accumulated on the surface of target cells offers the potential to overcome many of the challenges associated with drug delivery to heterogeneous tumors. Despite its considerable success in improving the efficacy of radioimmunotherapy, the pretargeting strategy remains underexplored for a majority of nanoparticle therapeutics applications, especially for targeted delivery to heterogeneous tumors. In this review, we will present concepts in tumor heterogeneity, the shortcomings of conventional targeted systems, lessons learned from pretargeted radioimmunotherapy, and important considerations for harnessing the pretargeting strategy to improve nanoparticle delivery to heterogeneous tumors
    corecore