43 research outputs found

    Acute cocoa flavanol supplementation improves muscle macro- and microvascular but not anabolic responses to amino acids in older men

    Get PDF
    The anabolic effects of nutrition on skeletal muscle may depend on adequate skeletal muscle perfusion, which is impaired in older people. Cocoa flavanols have been shown to improve flow-mediated dilation, an established measure of endothelial function. However, their effect on muscle microvascular blood flow is currently unknown. Therefore, the objective of this study was to explore links between the consumption of cocoa flavanols, muscle microvascular blood flow and muscle protein synthesis (MPS) in response to nutrition in older men. To achieve this objective leg blood flow (LBF), muscle microvascular blood volume (MBV) and MPS were measured under postabsorptive and postprandial (I.V glamin, dextrose to sustain glucose ~7.5 mmol·l-1) conditions in 20 older men. Ten of these men were studied with no cocoa flavanol intervention and a further 10 were studied with the addition of 350 mg of cocoa flavanols at the same time as nutrition began. Leg [femoral artery] blood flow was measured by Doppler ultrasound, muscle MBV by contrast-enhanced ultrasound (CEUS) using DefinityTM perflutren contrast agent and MPS using [1, 2-13C2] leucine tracer techniques. Our results show that although older individuals do not show an increase in LBF or MBV in response to feeding, these absent responses are apparent when cocoa flavanols are given acutely with nutrition. However this restoration in vascular responsiveness is not associated with improved MPS responses to nutrition. We conclude that acute cocoa flavanol supplementation improves muscle macro- and microvascular responses to nutrition, independently of modifying muscle protein anabolism

    Potential for Zika virus transmission by mosquitoes in temperate climates

    Get PDF
    Mosquito-borne Zika virus (ZIKV) transmission has almost exclusively been detected in the tropics despite the distributions of its primary vectors extending farther into temperate regions. Therefore, it is unknown whether ZIKV's range has reached a temperature-dependent limit, or if it can spread into temperate climates. Using field-collected mosquitoes for biological relevance, we found that two common temperate mosquito species, Aedes albopictus and Ochlerotatus detritus, were competent for ZIKV. We orally exposed mosquitoes to ZIKV and held them at between 17 and 31°C, estimated the time required for mosquitoes to become infectious, and applied these data to a ZIKV spatial risk model. We identified a minimum temperature threshold for the transmission of ZIKV by mosquitoes between 17 and 19°C. Using these data, we generated standardized basic reproduction number R0-based risk maps and we derived estimates for the length of the transmission season for recent and future climate conditions. Our standardized R0-based risk maps show potential risk of ZIKV transmission beyond the current observed range in southern USA, southern China and southern European countries. Transmission risk is simulated to increase over southern and Eastern Europe, northern USA and temperate regions of Asia (northern China, southern Japan) in future climate scenarios
    corecore