71 research outputs found

    Widespread Discordance of Gene Trees with Species Tree in Drosophila: Evidence for Incomplete Lineage Sorting

    Get PDF
    The phylogenetic relationship of the now fully sequenced species Drosophila erecta and D. yakuba with respect to the D. melanogaster species complex has been a subject of controversy. All three possible groupings of the species have been reported in the past, though recent multi-gene studies suggest that D. erecta and D. yakuba are sister species. Using the whole genomes of each of these species as well as the four other fully sequenced species in the subgenus Sophophora, we set out to investigate the placement of D. erecta and D. yakuba in the D. melanogaster species group and to understand the cause of the past incongruence. Though we find that the phylogeny grouping D. erecta and D. yakuba together is the best supported, we also find widespread incongruence in nucleotide and amino acid substitutions, insertions and deletions, and gene trees. The time inferred to span the two key speciation events is short enough that under the coalescent model, the incongruence could be the result of incomplete lineage sorting. Consistent with the lineage-sorting hypothesis, substitutions supporting the same tree were spatially clustered. Support for the different trees was found to be linked to recombination such that adjacent genes support the same tree most often in regions of low recombination and substitutions supporting the same tree are most enriched roughly on the same scale as linkage disequilibrium, also consistent with lineage sorting. The incongruence was found to be statistically significant and robust to model and species choice. No systematic biases were found. We conclude that phylogenetic incongruence in the D. melanogaster species complex is the result, at least in part, of incomplete lineage sorting. Incomplete lineage sorting will likely cause phylogenetic incongruence in many comparative genomics datasets. Methods to infer the correct species tree, the history of every base in the genome, and comparative methods that control for and/or utilize this information will be valuable advancements for the field of comparative genomics

    Increased Nucleotide Diversity with Transient Y Linkage in Drosophila americana

    Get PDF
    Recombination shapes nucleotide variation within genomes. Patterns are thought to arise from the local recombination landscape, influencing the degree to which neutral variation experiences hitchhiking with selected variation. This study examines DNA polymorphism along Chromosome 4 (element B) of Drosophila americana to identify effects of hitchhiking arising as a consequence of Y-linked transmission. A centromeric fusion between the X and 4(th) chromosomes segregates in natural populations of D. americana. Frequency of the X-4 fusion exhibits a strong positive correlation with latitude, which has explicit consequences for unfused 4(th) chromosomes. Unfused Chromosome 4 exists as a non-recombining Y chromosome or as an autosome proportional to the frequency of the X-4 fusion. Furthermore, Y linkage along the unfused 4 is disrupted as a function of the rate of recombination with the centromere. Inter-population and intra-chromosomal patterns of nucleotide diversity were assayed using six regions distributed along unfused 4(th) chromosomes derived from populations with different frequencies of the X-4 fusion. No difference in overall level of nucleotide diversity was detected among populations, yet variation along the chromosome exhibits a distinct pattern in relation to the X-4 fusion. Sequence diversity is inflated at loci experiencing the strongest Y linkage. These findings are inconsistent with the expected reduction in nucleotide diversity resulting from hitchhiking due to background selection or selective sweeps. In contrast, excessive polymorphism is accruing in association with transient Y linkage, and furthermore, hitchhiking with sexually antagonistic alleles is potentially responsible

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore