3,207 research outputs found

    Fundamental Properties of Cool Stars with Interferometry

    Full text link
    We present measurements of fundamental astrophysical properties of nearby, low-mass, K- and M-dwarfs from our DISCOS survey (DIameterS of COol Stars). The principal goal of our study is the determination of linear radii and effective temperatures for these stars. We calculate their radii from angular diameter measurements using the CHARA Array and Hipparcos distances. Combined with bolometric flux measurements based on literature photometry, we use our angular diameter results to calculate their effective surface temperatures. We present preliminary results established on an assortment of empirical relations to the stellar effective temperature and radius that are based upon these measurements. We elaborate on the discrepancy seen between theoretical and observed stellar radii, previously claimed to be related to stellar activity and/or metallicity. Our preliminary conclusion, however, is that convection plays a larger role in the determination of radii of these late-type stars. Understanding the source of the radius disagreement is likely to impact other areas of study for low-mass stars, such as the detection and characterization of extrasolar planets in the habitable zones.Comment: Contribution to Proceedings of Cool Stars 16 Workshop; 8 pages in ASP format; 9 figure

    Optical vortices with starlight: Implications for ground-based stellar coronagraphy

    Full text link
    Using an l = 1 blazed fork-hologram at the focal plane of the Asiago 122 cm telescope, we obtained optical vortices from the stellar system Rasalgethi (alpha Herculis) and from the single star Arcturus (alpha Bootis). We have analyzed the structure of the optical vortices obtained from non-monochromatic starlight under very poor seeing conditions using a fast CCD camera to obtain speckle patterns and carry out the lucky imaging technique, alternative to adaptive optics. With the insertion of a red filter and of a Lyot stop we performed l = 1 optical vortex coronography the double star HD74010. The results are in agreement with theory and numerical simulations. Our results open the way to applications of optical vortices to ground based astronomical observations, in particular for coronagraphy with l > 1 masks. No intrinsic orbital angular momentum was detected in the starlight.Comment: 4 pages, 5 figures. Revised data analysi

    The Search for Stellar Companions to Exoplanet Host Stars Using the CHARA Array

    Full text link
    Most exoplanets have been discovered via radial velocity studies, which are inherently insensitive to orbital inclination. Interferometric observations will show evidence of a stellar companion if it sufficiently bright, regardless of the inclination. Using the CHARA Array, we observed 22 exoplanet host stars to search for stellar companions in low-inclination orbits that may be masquerading as planetary systems. While no definitive stellar companions were discovered, it was possible to rule out certain secondary spectral types for each exoplanet system observed by studying the errors in the diameter fit to calibrated visibilities and by searching for separated fringe packets.Comment: 26 pages, 5 tables, 8 figure

    Imaging the Algol Triple System in H Band with the CHARA Interferometer

    Full text link
    Algol (Beta Per) is an extensively studied hierarchical triple system whose inner pair is a prototype semi-detached binary with mass transfer occurring from the sub-giant secondary to the main-sequence primary. We present here the results of our Algol observations made between 2006 and 2010 at the CHARA interferometer with the Michigan Infrared Combiner in the H band. The use of four telescopes with long baselines allows us to achieve better than 0.5 mas resolution and to unambiguously resolve the three stars. The inner and outer orbital elements, as well as the angular sizes and mass ratios for the three components are determined independently from previous studies. We report a significantly improved orbit for the inner stellar pair with the consequence of a 15% change in the primary mass compared to previous studies. We also determine the mutual inclination of the orbits to be much closer to perpendicularity than previously established. State-of-the-art image reconstruction algorithms are used to image the full triple system. In particular an image sequence of 55 distinct phases of the inner pair orbit is reconstructed, clearly showing the Roche-lobe-filling secondary revolving around the primary, with several epochs corresponding to the primary and secondary eclipses

    Multiplicity of Galactic Cepheids from long-baseline interferometry I. CHARA/MIRC detection of the companion of V1334 Cygni

    Get PDF
    We aim at determining the masses of Cepheids in binary systems, as well as their geometric distances and the flux contribution of the companions. The combination of interferometry with spectroscopy will offer a unique and independent estimate of the Cepheid masses. Using long-baseline interferometry at visible and infrared wavelengths, it is possible to spatially resolve binary systems containing a Cepheid down to milliarcsecond separations. Based on the resulting visual orbit and radial velocities, we can then derive the fundamental parameters of these systems, particularly the masses of the components and the geometric distance. We therefore performed interferometric observations of the first-overtone mode Cepheid V1334 Cyg with the CHARA/MIRC combiner. We report the first detection of a Cepheid companion using long-baseline interferometry. We detect the signature of a companion orbiting V1334 Cyg at two epochs. We measure a flux ratio between the companion and the Cepheid f = 3.10+/-0.08%, giving an apparent magnitude mH = 8.47+/-0.15mag. The combination of interferometric and spectroscopic data have enabled the unique determination of the orbital elements: P = 1938.6+/-1.2 days, Tp = 2 443 616.1+/-7.3, a = 8.54+/-0.51mas, i = 124.7+/-1.8{\deg}, e = 0.190+/-0.013, {\omega} = 228.7+/-1.6{\deg}, and {\Omega} = 206.3+/-9.4{\deg}. We derive a minimal distance d ~ 691 pc, a minimum mass for both stars of 3.6 Msol, with a spectral type earlier than B5.5V for the companion star. Our measured flux ratio suggests that radial velocity detection of the companion using spectroscopy is within reach, and would provide an orbital parallax and model-free masses.Comment: Published in A&

    First Results from the CHARA Array. II. A Description of the Instrument

    Full text link
    The CHARA Array is a six 1-m telescope optical/IR interferometric array located on Mount Wilson California, designed and built by the Center for High Angular Resolution Astronomy of Georgia State University. In this paper we describe the main elements of the Array hardware and software control systems as well as the data reduction methods currently being used. Our plans for upgrades in the near future are also described

    The Ages of A-Stars I: Interferometric Observations and Age Estimates for Stars in the Ursa Major Moving Group

    Full text link
    We have observed and spatially resolved a set of seven A-type stars in the nearby Ursa Major moving group with the Classic, CLIMB, and PAVO beam combiners on the CHARA Array. At least four of these stars have large rotational velocities (vsiniv \sin i \gtrsim 170 km s1\mathrm{km~s^{-1}}) and are expected to be oblate. These interferometric measurements, the stars' observed photometric energy distributions, and vsiniv \sin i values are used to computationally construct model oblate stars from which stellar properties (inclination, rotational velocity, and the radius and effective temperature as a function of latitude, etc.) are determined. The results are compared with MESA stellar evolution models (Paxton et al. 2011, 2013) to determine masses and ages. The value of this new technique is that it enables the estimation of the fundamental properties of rapidly rotating stars without the need to fully image the star. It can thus be applied to stars with sizes comparable to the interferometric resolution limit as opposed to those that are several times larger than the limit. Under the assumption of coevality, the spread in ages can be used as a test of both the prescription presented here and the MESA evolutionary code for rapidly rotating stars. With our validated technique, we combine these age estimates and determine the age of the moving group to be 414 ±\pm 23 Myr, which is consistent with, but much more precise than previous estimates.Comment: Accepted by Ap

    Universal homodyne tomography with a single local oscillator

    Full text link
    We propose a general method for measuring an arbitrary observable of a multimode electromagnetic field using homodyne detection with a single local oscillator. In this method the local oscillator scans over all possible linear combinations of the modes. The case of two modes is analyzed in detail and the feasibility of the measurement is studied on the basis of Monte-Carlo simulations. We also provide an application of this method in tomographic testing of the GHZ state.Comment: 12 pages, 5 figures (8 eps files

    Resolving Vega and the inclination controversy with CHARA/MIRC

    Full text link
    Optical and infrared interferometers definitively established that the photometric standard Vega (alpha Lyrae) is a rapidly rotating star viewed nearly pole-on. Recent independent spectroscopic analyses could not reconcile the inferred inclination angle with the observed line profiles, preferring a larger inclination. In order to resolve this controversy, we observed Vega using the six-beam Michigan Infrared Combiner on the Center for High Angular Resolution Astronomy Array. With our greater angular resolution and dense (u,v)-coverage, we find Vega is rotating less rapidly and with a smaller gravity darkening coefficient than previous interferometric results. Our models are compatible with low photospheric macroturbulence and also consistent with the possible rotational period of ~0.71 days recently reported based on magnetic field observations. Our updated evolutionary analysis explicitly incorporates rapid rotation, finding Vega to have a mass of 2.15+0.10_-0.15 Msun and an age 700-75+150 Myrs, substantially older than previous estimates with errors dominated by lingering metallicity uncertainties (Z=0.006+0.003-0.002).Comment: Accepted for publication in ApJ Letter
    corecore