17 research outputs found

    Whispering to the Deaf: Communication by a Frog without External Vocal Sac or Tympanum in Noisy Environments

    Get PDF
    Atelopus franciscus is a diurnal bufonid frog that lives in South-American tropical rain forests. As in many other frogs, males produce calls to defend their territories and attract females. However, this species is a so-called “earless” frog lacking an external tympanum and is thus anatomically deaf. Moreover, A. franciscus has no external vocal sac and lives in a sound constraining environment along river banks where it competes with other calling frogs. Despite these constraints, male A. franciscus reply acoustically to the calls of conspecifics in the field. To resolve this apparent paradox, we studied the vocal apparatus and middle-ear, analysed signal content of the calls, examined sound and signal content propagation in its natural habitat, and performed playback experiments. We show that A. franciscus males can produce only low intensity calls that propagate a short distance (<8 m) as a result of the lack of an external vocal sac. The species-specific coding of the signal is based on the pulse duration, providing a simple coding that is efficient as it allows discrimination from calls of sympatric frogs. Moreover, the signal is redundant and consequently adapted to noisy environments. As such a coding system can be efficient only at short-range, territory holders established themselves at short distances from each other. Finally, we show that the middle-ear of A. franciscus does not present any particular adaptations to compensate for the lack of an external tympanum, suggesting the existence of extra-tympanic pathways for sound propagation

    Stridulations Reveal Cryptic Speciation in Neotropical Sympatric Ants

    Get PDF
    The taxonomic challenge posed by cryptic species underlines the importance of using multiple criteria in species delimitation. In the current paper we tested the use of acoustic analysis as a tool to assess the real diversity in a cryptic species complex of Neotropical ants. In order to understand the potential of acoustics and to improve consistency in the conclusions by comparing different approaches, phylogenetic relationships of all the morphs considered were assessed by the analysis of a fragment of the mitochondrial DNA cytochrome b. We observed that each of the cryptic morph studied presents a morphologically distinct stridulatory organ and that all sympatric morphs produce distinctive stridulations. This is the first evidence of such a degree of specialization in the acoustic organ and signals in ants, which suggests that stridulations may be among the cues used by these ants during inter-specific interactions. Mitochondrial DNA variation corroborated the acoustic differences observed, confirming acoustics as a helpful tool to determine cryptic species in this group of ants, and possibly in stridulating ants in general. Congruent morphological, acoustic and genetic results constitute sufficient evidence to propose each morph studied here as a valid new species, suggesting that P. apicalis is a complex of at least 6 to 9 species, even if they present different levels of divergence. Finally, our results highlight that ant stridulations may be much more informative than hitherto thought, as much for ant communication as for integrative taxonomists

    Ophthalmic complications during the dengue epidemic in Reunion Island in 2020: a case series and review of the literature

    No full text
    Abstract Introduction Dengue is an arboviral disease transmitted by the dengue virus, whose vectors are Aedes aegypti and Aedes albopictus. The acute phase with its cohort of well-known symptoms is usually spontaneously favorable. Since 2020 in Reunion Island, a new symptom has appeared: the ocular damage of dengue fever, which has already been described in South Asia and South-East Asia. We therefore decided to describe the clinical, biological, ophthalmological, therapeutic, and outcomes of patients with ocular manifestations during dengue fever in Reunion Island in 2020. Patients and methods This was a retrospective observational study. Patients were included from January 2020 to August 2020 and then reassessed by teleconsultation 1 year later. The patients were identified from the French public health surveillance network by all ophthalmologists on the island. Medical data were collected directly from medical records. Results Twenty-eight patients were included. The mean age was 41.9 years. Ocular involvement occurred approximately 9.2 days after the onset of dengue symptoms. The main symptoms were scotoma (71.4%) and sudden decrease of visual acuity (39.2%). Eighteen patients (64.2%) had macular involvement. Fourteen patients were treated with oral or intravenous corticosteroids. Twenty-two (78.5%) patients were evaluated by telephone one year later. Scotoma and decreased visual acuity persisted in 15 patients. Thirteen patients (59%) were bothered by night driving, 32% of patients had reading difficulties and 27% of patients became sensitive to prolonged exposure to screens. Conclusion Ocular complications of dengue require early and collegial management to limit the risk of long-term sequelae. Further studies on the characteristics and complications of dengue fever are needed to better understand this disease

    Sounds Modulate Males’ Aggressiveness in a Cichlid Fish

    No full text
    International audienceAcoustic signals are produced in many fish species during agonistic or courtship interactions. A way to test the biological role of these sounds is the use of acoustic playback experiments. However, sounds are usually associated with visual displays and playback experiments performed in fish so far, often failed to match acoustic and visual stimuli. To avoid this mismatch issue, we experimentally separated or coupled visual and acoustic channels to test the role of sounds produced during male–male aggressive interactions in a cichlid fish, Metriaclima zebra. Results show that aggressive behaviour is based on visual stimuli and that acoustic signals alone never trigger aggression. Furthermore, the association between visual and acoustic channels lowers the level of aggressiveness found when fish can only interact visually. This suggests that acoustic signals used during a dispute may complement visual displays to modulate males’ behaviour by reducing their aggressiveness and the risk of escalated fights
    corecore