31 research outputs found

    A computational framework for transcriptome assembly and annotation in non-model organisms: the case of venturia inaequalis

    Get PDF
    Philosophiae Doctor - PhDIn this dissertation three computational approaches are presented that enable optimization of reference-free transcriptome reconstruction. The first addresses the selection of bona fide reconstructed transcribed fragments (transfrags) from de novo transcriptome assemblies and annotation with a multiple domain co-occurrence framework. We showed that selected transfrags are functionally relevant and represented over 94% of the information derived from annotation by transference. The second approach relates to quality score based RNA-seq sub-sampling and the description of a novel sequence similarity-derived metric for quality assessment of de novo transcriptome assemblies. A detail systematic analysis of the side effects induced by quality score based trimming and or filtering on artefact removal and transcriptome quality is describe. Aggressive trimming produced incomplete reconstructed and missing transfrags. This approach was applied in generating an optimal transcriptome assembly for a South African isolate of V. inaequalis. The third approach deals with the computational partitioning of transfrags assembled from RNA-Seq of mixed host and pathogen reads. We used this strategy to correct a publicly available transcriptome assembly for V. inaequalis (Indian isolate). We binned 50% of the latter to Apple transfrags and identified putative immunity transcript models. Comparative transcriptomic analysis between fungi transfrags from the Indian and South African isolates reveal effectors or transcripts that may be expressed in planta upon morphogenic differentiation. These studies have successfully identified V. inaequalis specific transfrags that can facilitate gene discovery. The unique access to an in-house draft genome assembly allowed us to provide preliminary description of genes that are implicated in pathogenesis. Gene prediction with bona fide transfrags produced 11,692 protein-coding genes. We identified two hydrophobin-like genes and six accessory genes of the melanin biosynthetic pathway that are implicated in the invasive action of the appressorium. The cazyome reveals an impressive repertoire of carbohydrate degrading enzymes and carbohydrate-binding modules amongst which are six polysaccharide lyases, and the largest number of carbohydrate esterases (twenty-eight) known in any fungus sequenced to dat

    Host transcriptomic signatures of tuberculosis can predict immune reconstitution inflammatory syndrome in HIV patients.

    Get PDF
    Immune reconstitution inflammatory syndrome (IRIS) can be a complication of antiretroviral therapy (ART) in patients with advanced HIV, but its pathogenesis is uncertain. In tuberculosis (TB) endemic countries, IRIS is often associated with mycobacterial infections or Bacille-Calmette-Guerin (BCG) vaccination in children. With no predictive or confirmatory tests at present, IRIS remains a diagnosis of exclusion. We tested whether RISK6 and Sweeney3, validated immune-based blood transcriptomic signatures for TB, could predict or diagnose IRIS in HIV+ children and adults. Transcripts were measured by RT-qPCR in BCG-vaccinated children and by microarray in HIV+ adults with TB including TB meningitis (TBM). Signature scores before ART initiation and up to IRIS diagnosis were compared between participants who did or did not develop IRIS. In children, RISK6 and Sweeney3 discriminated IRIS cases from non-IRIS controls before ART, and at diagnosis. In adults with TB, RISK6 discriminated IRIS cases from controls after half-week on ART and at TB-IRIS onset. In adults with TBM, only Sweeney3 discriminated IRIS cases from controls before ART, while both signatures distinguished cases from controls at TB-IRIS onset. Parsimonious whole blood transcriptomic signatures for TB showed potential to predict and diagnose IRIS in HIV+ children and adults

    Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses

    Get PDF
    Tuberculosis (TB) remains a major public health problem and we lack a comprehensive understanding of how Mycobacterium tuberculosis (M. tb) infection impacts host immune responses. We compared the induced immune response to TB antigen, BCG and IL-1β stimulation between latently M. tb infected individuals (LTBI) and active TB patients. This revealed distinct responses between TB/LTBI at transcriptomic, proteomic and metabolomic levels. At baseline, we identified a novel immune-metabolic association between pregnane steroids, the PPARγ pathway and elevated plasma IL-1ra in TB. We observed dysregulated IL-1 responses after BCG stimulation in TB patients, with elevated IL-1ra responses being explained by upstream TNF differences. Additionally, distinct secretion of IL-1α/IL-1β in LTBI/TB after BCG stimulation was associated with downstream differences in granzyme mediated cleavage. Finally, IL-1β driven signalling was dramatically perturbed in TB disease but was completely restored after successful treatment. This study improves our knowledge of how immune responses are altered during TB disease, and may support the design of improved preventive and therapeutic tools, including host-directed strategies

    Cytomegalovirus infection is a risk factor for tuberculosis disease in infants.

    Get PDF
    Immune activation is associated with increased risk of tuberculosis (TB) disease in infants. We performed a case-control analysis to identify drivers of immune activation and disease risk. Among 49 infants who developed TB disease over the first 2 years of life, and 129 healthy matched controls, we found the cytomegalovirus-stimulated (CMV-stimulated) IFN-γ response to be associated with CD8+ T cell activation (Spearman's rho, P = 6 × 10-8). A CMV-specific IFN-γ response was also associated with increased risk of developing TB disease (conditional logistic regression; P = 0.043; OR, 2.2; 95% CI, 1.02-4.83) and shorter time to TB diagnosis (Log Rank Mantel-Cox, P = 0.037). CMV+ infants who developed TB disease had lower expression of NK cell-associated gene signatures and a lower frequency of CD3-CD4-CD8- lymphocytes. We identified transcriptional signatures predictive of TB disease risk among CMV ELISpot-positive (area under the receiver operating characteristic [AUROC], 0.98, accuracy, 92.57%) and -negative (AUROC, 0.9; accuracy, 79.3%) infants; the CMV- signature was validated in an independent infant study (AUROC, 0.71; accuracy, 63.9%). A 16-gene signature that previously identified adolescents at risk of developing TB disease did not accurately classify case and control infants in this study. Understanding the microbial drivers of T cell activation, such as CMV, could guide new strategies for prevention of TB disease in infants

    Validation of a host blood transcriptomic biomarker for pulmonary tuberculosis in people living with HIV: a prospective diagnostic and prognostic accuracy study.

    Get PDF
    BACKGROUND: A rapid, blood-based triage test that allows targeted investigation for tuberculosis at the point of care could shorten the time to tuberculosis treatment and reduce mortality. We aimed to test the performance of a host blood transcriptomic signature (RISK11) in diagnosing tuberculosis and predicting progression to active pulmonary disease (prognosis) in people with HIV in a community setting. METHODS: In this prospective diagnostic and prognostic accuracy study, adults (aged 18-59 years) with HIV were recruited from five communities in South Africa. Individuals with a history of tuberculosis or household exposure to multidrug-resistant tuberculosis within the past 3 years, comorbid risk factors for tuberculosis, or any condition that would interfere with the study were excluded. RISK11 status was assessed at baseline by real-time PCR; participants and study staff were masked to the result. Participants underwent active surveillance for microbiologically confirmed tuberculosis by providing spontaneously expectorated sputum samples at baseline, if symptomatic during 15 months of follow-up, and at 15 months (the end of the study). The coprimary outcomes were the prevalence and cumulative incidence of tuberculosis disease confirmed by a positive Xpert MTB/RIF, Xpert Ultra, or Mycobacteria Growth Indicator Tube culture, or a combination of such, on at least two separate sputum samples collected within any 30-day period. FINDINGS: Between March 22, 2017, and May 15, 2018, 963 participants were assessed for eligibility and 861 were enrolled. Among 820 participants with valid RISK11 results, eight (1%) had prevalent tuberculosis at baseline: seven (2·5%; 95% CI 1·2-5·0) of 285 RISK11-positive participants and one (0·2%; 0·0-1·1) of 535 RISK11-negative participants. The relative risk (RR) of prevalent tuberculosis was 13·1 times (95% CI 2·1-81·6) greater in RISK11-positive participants than in RISK11-negative participants. RISK11 had a diagnostic area under the receiver operating characteristic curve (AUC) of 88·2% (95% CI 77·6-96·7), and a sensitivity of 87·5% (58·3-100·0) and specificity of 65·8% (62·5-69·0) at a predefined score threshold (60%). Of those with RISK11 results, eight had primary endpoint incident tuberculosis during 15 months of follow-up. Tuberculosis incidence was 2·5 per 100 person-years (95% CI 0·7-4·4) in the RISK11-positive group and 0·2 per 100 person-years (0·0-0·5) in the RISK11-negative group. The probability of primary endpoint incident tuberculosis was greater in the RISK11-positive group than in the RISK11-negative group (cumulative incidence ratio 16·0 [95% CI 2·0-129·5]). RISK11 had a prognostic AUC of 80·0% (95% CI 70·6-86·9), and a sensitivity of 88·6% (43·5-98·7) and a specificity of 68·9% (65·3-72·3) for incident tuberculosis at the 60% threshold. INTERPRETATION: RISK11 identified prevalent tuberculosis and predicted risk of progression to incident tuberculosis within 15 months in ambulant people living with HIV. RISK11's performance approached, but did not meet, WHO's target product profile benchmarks for screening and prognostic tests for tuberculosis. FUNDING: Bill & Melinda Gates Foundation and the South African Medical Research Council

    Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial.

    Get PDF
    BACKGROUND: Targeted preventive therapy for individuals at highest risk of incident tuberculosis might impact the epidemic by interrupting transmission. We tested performance of a transcriptomic signature of tuberculosis (RISK11) and efficacy of signature-guided preventive therapy in parallel, using a hybrid three-group study design. METHODS: Adult volunteers aged 18-59 years were recruited at five geographically distinct communities in South Africa. Whole blood was sampled for RISK11 by quantitative RT-PCR assay from eligible volunteers without HIV, recent previous tuberculosis (ie, <3 years before screening), or comorbidities at screening. RISK11-positive participants were block randomised (1:2; block size 15) to once-weekly, directly-observed, open-label isoniazid and rifapentine for 12 weeks (ie, RISK11 positive and 3HP positive), or no treatment (ie, RISK11 positive and 3HP negative). A subset of eligible RISK11-negative volunteers were randomly assigned to no treatment (ie, RISK11 negative and 3HP negative). Diagnostic discrimination of prevalent tuberculosis was tested in all participants at baseline. Thereafter, prognostic discrimination of incident tuberculosis was tested in the untreated RISK11-positive versus RISK11-negative groups, and treatment efficacy in the 3HP-treated versus untreated RISK11-positive groups, during active surveillance through 15 months. The primary endpoint was microbiologically confirmed pulmonary tuberculosis. The primary outcome measures were risk ratio [RR] for tuberculosis of RISK11-positive to RISK11-negative participants, and treatment efficacy. This trial is registered with ClinicalTrials.gov, NCT02735590. FINDINGS: 20 207 volunteers were screened, and 2923 participants were enrolled, including RISK11-positive participants randomly assigned to 3HP (n=375) or no 3HP (n=764), and 1784 RISK11-negative participants. Cumulative probability of prevalent or incident tuberculosis disease was 0·066 (95% CI 0·049 to 0·084) in RISK11-positive (3HP negative) participants and 0·018 (0·011 to 0·025) in RISK11-negative participants (RR 3·69, 95% CI 2·25-6·05) over 15 months. Tuberculosis prevalence was 47 (4·1%) of 1139 versus 14 (0·78%) of 1984 in RISK11-positive compared with RISK11-negative participants, respectively (diagnostic RR 5·13, 95% CI 2·93 to 9·43). Tuberculosis incidence over 15 months was 2·09 (95% CI 0·97 to 3·19) vs 0·80 (0·30 to 1·30) per 100 person years in RISK11-positive (3HP-negative) participants compared with RISK11-negative participants (cumulative incidence ratio 2·6, 95% CI 1·2 to 5·9). Serious adverse events related to 3HP included one hospitalisation for seizures (unintentional isoniazid overdose) and one death of unknown cause (possibly temporally related). Tuberculosis incidence over 15 months was 1·94 (95% CI 0·35 to 3·50) versus 2·09 (95% CI 0·97 to 3·19) per 100 person-years in 3HP-treated RISK11-positive participants compared with untreated RISK11-positive participants (efficacy 7·0%, 95% CI -145 to 65). INTERPRETATION: The RISK11 signature discriminated between individuals with prevalent tuberculosis, or progression to incident tuberculosis, and individuals who remained healthy, but provision of 3HP to signature-positive individuals after exclusion of baseline disease did not reduce progression to tuberculosis over 15 months. FUNDING: Bill and Melinda Gates Foundation, South African Medical Research Council

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Plasma Type I IFN Protein Concentrations in Human Tuberculosis

    Get PDF
    International audienceTuberculosis (TB) remains one of the leading causes of mortality worldwide, and a lack of understanding of basic disease pathogenesis is hampering development of new vaccines and treatments. Multiple studies have previously established a role for type I interferon (IFN) in TB disease. Type I IFNs are critical immune mediators for host responses to viral infection, yet their specific influence in bacterial infection remains unclear. As IFN-stimulated genes (ISGs) can have both stimulatory and inhibitory effects on immune function, clarifying the role of type I interferon in TB remains an important question. The quantification of interferon proteins in the circulation of patients has been restricted until the recent development of digital ELISA. To test the hypothesis that patients with active TB disease have elevated circulating type I IFN we quantified plasma IFNα and β proteins with Simoa digital ELISA in patients with active disease and asymptomatic M. tuberculosis infection. Strikingly no differences were observed between these two groups, while plasma from acute influenza infection revealed significantly higher plasma levels of both IFNα and IFNβ proteins. These results suggest a discordance between ISG mRNA expression by blood leukocytes and circulating type I IFN in TB

    Performance of diagnostic and predictive host blood transcriptomic signatures for Tuberculosis disease: A systematic review and meta-analysis.

    No full text
    IntroductionHost blood transcriptomic biomarkers have potential as rapid point-of-care triage, diagnostic, and predictive tests for Tuberculosis disease. We aimed to summarise the performance of host blood transcriptomic signatures for diagnosis of and prediction of progression to Tuberculosis disease; and compare their performance to the recommended World Health Organisation target product profile.MethodsA systematic review and meta-analysis of the performance of host blood mRNA signatures for diagnosing and predicting progression to Tuberculosis disease in HIV-negative adults and adolescents, in studies with an independent validation cohort. Medline, Scopus, Web of Science, and EBSCO libraries were searched for articles published between January 2005 and May 2019, complemented by a search of bibliographies. Study selection, data extraction and quality assessment were done independently by two reviewers. Meta-analysis was performed for signatures that were validated in ≥3 comparable cohorts, using a bivariate random effects model.ResultsTwenty studies evaluating 25 signatures for diagnosis of or prediction of progression to TB disease in a total of 68 cohorts were included. Eighteen studies evaluated 24 signatures for TB diagnosis and 17 signatures met at least one TPP minimum performance criterion. Three diagnostic signatures were validated in clinically relevant cohorts to differentiate TB from other diseases, with pooled sensitivity 84%, 87% and 90% and pooled specificity 79%, 88% and 74%, respectively. Four studies evaluated signatures for progression to TB disease and performance of one signature, assessed within six months of TB diagnosis, met the minimal TPP for a predictive test for progression to TB disease.ConclusionHost blood mRNA signatures hold promise as triage tests for TB. Further optimisation is needed if mRNA signatures are to be used as standalone diagnostic or predictive tests for therapeutic decision-making

    Tuberculosis alters immune-metabolic pathways resulting in perturbed IL-1 responses

    No full text
    Tuberculosis (TB) remains a major public health problem with host-directed therapeutics offering potential as novel treatment strategies. However, their successful development still requires a comprehensive understanding of how Mycobacterium tuberculosis ( M.tb ) infection impacts immune responses. To address this challenge, we applied standardised immunomonitoring tools to compare TB antigen, BCG and IL-1β induced immune responses between individuals with latent M.tb infection (LTBI) and active TB disease, at diagnosis and after cure. This revealed distinct responses between TB and LTBI groups at transcriptomic, proteomic and metabolomic levels. At baseline, we identified pregnane steroids and the PPARγ pathway as new immune-metabolic drivers of elevated plasma IL-1ra in TB. We also observed dysregulated induced IL-1 responses after BCG stimulation in TB patients. Elevated IL-1 antagonist responses were explained by upstream differences in TNF responses, while for IL-1 agonists it was due to downstream differences in granzyme mediated cleavage. Finally, the immune response to IL-1β driven signalling was also dramatically perturbed in TB disease but was completely restored after successful antibiotic treatment. This systems immunology approach improves our knowledge of how immune responses are altered during TB disease, and may support design of improved diagnostic, prophylactic and therapeutic tools
    corecore