3,584 research outputs found

    Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues

    Get PDF
    This paper reports on the initial stages of a project to simulate the nonlinear mechanical behavior of an aging human face. A cross-section of the facial structure is considered to consist of a multilayered composite of tissues with differing mechanical behavior. The constitutive properties of these tissues are incorporated into a finite element model of the three-dimensional facial geometry. Relatively short time (elastic-viscoplastic) behavior is governed by equations previously developed which are consistent with mechanical tests. The long time response is controlled by the aging elastic components of the tissues. An aging function is introduced which, in a simplified manner, captures the observed loss of stiffness of these aging elastic components due to the history of straining as well as other physiological and environmental influences. Calculations have been performed for 30years of exposure to gravitational forces. Progressive gravimetric soft tissue descent is simulated, which is regarded as the main indication of facial aging. Results are presented for the deformations and stress distributions in the layers of the soft tissue

    A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province

    Get PDF
    We propose a method for the analysis of functional data with complex dependencies, such as spatially dependent curves or time dependent surfaces, over highly textured domains. The models are based on the idea of regression with partial differential regularizations. In particular, we consider here two roughness penalties that account separately for the regularity of the field in space and in time. Among the various modelling features, the proposed method is able to deal with spatial domains featuring peninsulas, islands and other complex geometries. Space-time varying covariate information is included in the model via a semi-parametric framework. The proposed method is compared via simulation studies to other spatiotemporal techniques and it is applied to the analysis of the annual production of waste in the towns of Venice province

    Multinet : enabler for next generation enterprise wireless services

    Get PDF
    Wireless communications are currently experiencing a fast migration toward the beyond third-generation (B3G)/fourth generation (4G) era. This represents a generational change in wireless systems: new capabilities related to mobility and new services support is required and new concepts as individual-centric, user-centric or ambient-aware communications are included. One of the main restrictions associated to wireless technology is mobility management, this feature was not considered in the design phase; for this reason, a complete solution is not already found, although different solutions are proposed and are being proposed. In MULTINET project, features as mobility and multihoming are applied to wireless network to provide the necessary network and application functionality enhancements for seamless data communication mobility considering end-user scenario and preferences. The aim of this paper is to show the benefits of these functionalities from the Service Providers and final User point of view

    Topological Wilson-loop area law manifested using a superposition of loops

    Full text link
    We introduce a new topological effect involving interference of two meson loops, manifesting a path-independent topological area dependence. The effect also draws a connection between quark confinement, Wilson-loops and topological interference effects. Although this is only a gedanken experiment in the context of particle physics, such an experiment may be realized and used as a tool to test confinement effects and phase transitions in quantum simulation of dynamic gauge theories.Comment: Superceding arXiv:1206.2021v1 [quant-ph

    Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation

    Get PDF
    Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4+/CD25+/FoxP3+ T cells (Tregs). Conclusions: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance

    Added diagnostic value of 16S rRNA gene pan-mycobacterial PCR for nontuberculous mycobacterial infections: a 10-year retrospective study.

    Get PDF
    The diagnosis of mycobacterial infections has been dramatically improved by the introduction of molecular methods aimed to reduce the time to diagnosis as compared with culture. The broad range pan-mycobacterial PCR can detect all the mycobacterial species directly from clinical specimens. We aimed to evaluate its usefulness and its clinical added value for the diagnosis of nontuberculous mycobacterial (NTM) infections. We performed a retrospective study (2003-2013) including 952 samples taken from 639 patients with clinical suspicion of NTM infection. The performance of smear microscopy, PCR and culture was established using clinical data to investigate discrepant results. We also compared the time to microbial diagnosis between the direct PCR and culture. The sensitivity, specificity, positive and negative predictive values of the PCR were 61.6% (53.5-69.1), 99.1% (98.2-99.6), 92.8% (85.8-96.5) and 93.4% (91.6-94.9), respectively, when considering all specimens. When considering smear-positive specimens and smear-negative specimens, the sensitivity was 81.6% and 40%, respectively. The sensitivity for pulmonary and extra-pulmonary smear-positive specimens was 85.2% versus 72.7%. The median time to identification at species level was 35 days (SD, 17.67) for culture and 6 days (SD, 2.67) for the PCR (when positive), which represents a 29-day shorter time to results (p < 0.0001). The 16S rRNA gene pan-mycobacterial PCR displays a substantial benefit in terms of time to diagnose NTM infections when compared with culture. Despite an excellent specificity, its sensitivity is yet limited in particular for smear-negative specimens, which might be improved by relying onto real-time PCRs

    Food Selectivity in Children with Autism: Guidelines for Assessment and Clinical Interventions

    Get PDF
    Autisms Spectrum Disorders (ASD) are characterized by core symptoms (social communication and restricted and repetitive behaviors) and related comorbidities, including sensory anomalies, feeding issues, and challenging behaviors. Children with ASD experience significantly more feeding problems than their peers. In fact, parents and clinicians have to manage daily the burden of various dysfunctional behaviors of children at mealtimes (food refusal, limited variety of food, single food intake, or liquid diet). These dysfunctional behaviors at mealtime depend on different factors that are either medical/sensorial or behavioral. Consequently, a correct assessment is necessary in order to program an effective clinical intervention. The aim of this study is to provide clinicians with a guideline regarding food selectivity concerning possible explanations of the phenomenon, along with a direct/indirect assessment gathering detailed and useful information about target feeding behaviors. Finally, a description of evidence-based sensorial and behavioral strategies useful also for parent-mediated intervention is reported addressing food selectivity in children with ASD

    Qualitative characteristics of four Sicilian monofloral honeys from Apis mellifera ssp. sicula

    Get PDF
    Four monofloral honeys, obtained from the Sicilian black bee by foraging on thistle, sulla, chestnut and eucalyp-tus, were studied. Results showed that the phenolic composition of chestnut honey was the highest (316 mg gallic acid equivalent GAE/kg), while that of sulla honey was the lowest (122 mg GAE/kg). Data confirmed a correla-tion between the total phenol content and colour intensity in chestnut honey, which was the darkest of the four samples. Sulla honey showed the highest antioxidant activity, while eucalyptus honey had the highest mineral content (K, Ca, Mg, and Na). Thistle honey showed the most intense floral and fruity aromas, as well as an intense yellow colour. Principal component analysis showed the potential to discriminate different honeys in three different quadrants

    Light controls motility and phase separation of photosynthetic microbes

    No full text
    Large ensembles of interacting, out-of-equilibrium agents are a paradigm of active matter. Their constituents' intrinsic activity may entail the spontaneous separation into localized phases of high and low densities. Motile microbes, equipped with ATP-fueled engines, are prime examples of such phase-separating active matter, which is fundamental in myriad biological processes. The fact that spontaneous spatial aggregation is not widely recognized as a general feature of microbial communities challenges the generalisation of phase separation beyond artificial active systems. Here, we report on the phase separation of populations of Chlamydomonas reinhardtii that can be controlled by light in a fully reversible manner. We trace this phenomenon back to the light- and density-dependent motility, thus bridging the gap from light perception on the single-cell level to collective spatial self-organization into regions of high and low density. Its spectral sensitivity suggests that microbial motility and phase separation are regulated by the activity of the photosynthetic machinery. Characteristic fingerprints of the stability and dynamics of this active system paint a picture that cannot be reconciled with the current physical understanding of phase separation in artificial active matter, whereby collective behavior can emerge from inherent motility modulation in response to changing stimuli. Our results therefore point towards the existence of a broader class of self-organization phenomena in living systems
    corecore