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A penalized regression model for spatial functional data with application
to the analysis of the production of waste in Venice province

Mara S. Bernardi · Laura M. Sangalli · Gabriele Mazza · James O. Ramsay

Abstract We propose a method for the analysis of func-
tional data with complex dependencies, such as spatially
dependent curves or time dependent surfaces, over highly
textured domains. The models are based on the idea of re-
gression with partial differential regularizations. In particu-
lar, we consider here two roughness penalties that account
separately for the regularity of the field in space and in time.
Among the various modelling features, the proposed method
is able to deal with spatial domains featuring peninsulas,
islands and other complex geometries. Space-time varying
covariate information is included in the model via a semi-
parametric framework. The proposed method is compared
via simulation studies to other spatio-temporal techniques
and it is applied to the analysis of the annual production of
waste in the towns of Venice province.

Keywords Space-time model · Differential regularization ·
Finite elements

1 Introduction

In this work we deal with spatio-temporal data distributed
over a spatial domain which presents complex geometries.
That is, the irregular shape of the domain influences the phe-
nomenon under study and there are important geographical
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elements within the boundary such as islands and peninsu-
las that impact the distribution of the data. We refer to such
domains as textured.

As an illustrative example, consider the estimation of
the temporal evolution of the amount of per capita muni-
cipal waste produced in the towns of Venice province. Fig-
ure 1 shows the Venice province, with dots indicating town
centers, including municipalities and other tourist localities
of particular relevance. The province boundary is shown by
a red line, highlighting the irregular shape of the province
administrative borders and its complex coastlines, with the
Venice lagoon partly enclosed by elongated peninsulas and
small islands.
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Quarto D'Altino
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Fig. 1: Spatial domain of the Venice waste data, with a red
line highlighting the province boundary and dots indicating
the towns centers.
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Fig. 2: Temporal evolution of the yearly per capita produc-
tion (kg per resident) of municipal waste in the towns of
Venice province.

The data are measurements from 1997 to 2011 of the
yearly amount of per capita municipal waste (total kg di-
vided by the number of municipality residents) and are pro-
vided by the Arpav, the Agenzia regionale per la preven-
zione e protezione ambientale del Veneto.

Figure 2 shows the temporal evolution of the produc-
tion of per capita waste in the towns of Venice province and
Figure 3 is a bubble plot of the data at a fixed year, 2006.
The phenomenon portrayed by these data is expressed dif-
ferently in different parts of the domain. Consider for in-
stance the two towns of Cavallino-Treporti (in the peninsula
at the north-east of Venice) and Quarto d’Altino (north of
Venice), indicated by black dots in Figure 3. The temporal
evolution of the production of per capita municipal waste
in the two towns, highlighted in Figure 2, is rather differ-
ent, with strongly increasing and high values in the seaside
and tourist town of Cavallino-Treporti, opposed to the not
increasing and lower values measured in hinterland town
of Quarto d’Altino. These two towns are close in terms of
their geodesic distance, but they are actually separated by
the Venice lagoon. Hence, appropriately accounting for the
shape of the domain, characterized for instance by a strong
concavity formed by the lagoon, is crucial to accurately han-
dle these data.

When analyzing the temporal evolutions of the amount
of per capita municipal waste, we shall make a strong sim-
plification of the nature of these data, and consider them
in the framework of geostatistical functional data (Delicado
et al, 2010), where the datum is observable in principle in
any point of the domain, instead of in the framework of
functional areal data. As detailed in Section 7, this is due
to the fact that we miss the information concerning the ur-
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Fig. 3: Per capita production (kg per resident) of munic-
ipal waste in the towns of Venice province in 2006. The
data include all municipalities of Venice province and addi-
tional four localities (Bibione, Murano, Lido di Venezia and
Pellestrina), that do not constitute a municipality on their
own, but have been included due to their tourist relevance
and their location on the domain. For these additional four
localities, the considered datum is a replicate of the datum
of their corresponding municipalities (see Section 7).

banized areas of the municipalities, where the type of waste
here considered (that does not include agricultural, indus-
trial, construction/demolition and hazardous waste) is pro-
duced.

Various methods have been recently proposed for the
analysis of spatially dependent functional data. Starting from
the pioneering work of Goulard and Voltz (1993), kriging
prediction methods for stationary spatial functional data are
developed in Delicado et al (2010), Nerini et al (2010) and
Giraldo et al (2011). Recent techniques developing universal
kriging approaches for spatially dependent functional data
are offered by Caballero et al (2013), Menafoglio et al (2013)
and Menafoglio et al (2014). An extension of kriging for
functional data which takes into account the presence of co-
variates is developed in Ignaccolo et al (2014). The same
data can be also considered in a more classical space-time
data framework. An extensive literature on spatio-temporal
models has been produced; we refer the reader to Cressie
and Wikle (2011) and references therein. On the other hand,
these methods are not well suited for the context we are here
considering because they do not take into account the shape
of the domain; for instance these methods would smooth
across concave boundary regions, thus closely linking data
points that are in fact far apart by land connections.
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Recent methods for the analysis of spatio-temporal data
that instead specifically account for the geometry of the do-
main of interest are described in Augustin et al (2013) and
Marra et al (2012). These models are based on the spatial
smoother proposed by Wood et al (2008). Here, we extend
the spatial models with differential regularization described
in Ramsay (2002), Sangalli et al (2013) and Azzimonti et al
(2015) to time dependent data, and propose a Spatio-Tem-
poral regression model with Partial Differential Equations
regularization (ST-PDE). The model is implemented in R
(R Core Team, 2014), based on the package fdaPDE (Lila
et al, 2016).

The paper is organized as follows. Section 2 describes
the ST-PDE model. Section 3 shows the numerical imple-
mentation of the model. Section 4 illustrates the extension of
the model for the inclusion of space-time varying covariates.
Section 5 describes a variation of the ST-PDE model. Sec-
tion 6 compares via simulation studies the ST-PDE model to
other spatio-temporal prediction techniques. Section 7 shows
the application of the proposed method to the analysis of the
per capita municipal waste in the Venice province. Section
8 outlines some possible model extensions.

2 Data and model

Let {pi = (xi,yi); i = 1, ...,n} be a set of n spatial points on
a bounded domain Ω ⊂ R2, whose boundary ∂Ω is a curve
of class C 2, and {t j; j = 1, ...,m} be a set of m time instants
in a time interval [T1,T2]⊂ R. Let zi j be the value of a real-
valued variable observed at point pi and time t j. In our illus-
trative application, the spatial domain Ω is the province of
Venice, the spatial locations pi are the centers of the towns,
the time instants t j are the years between 1997 and 2011 and
the variable of interest zi j is the amount of per capita munic-
ipal waste produced in the town i and year t j. The data zi j
are a sampling of space dependent temporal curves. Equiv-
alently, they can be seen as a sampling of time dependent
surfaces on Ω .

We assume that {zi j; i = 1, ...,n; j = 1, ...,m} are noisy
observations of an underlying spatio-temporal smooth func-
tion f (p, t):

zi j = f (pi, t j)+ εi j i = 1, ...,n, j = 1, ...,m, (1)

where {εi j; i = 1, ...,n; j = 1, ...m} are independently dis-
tributed residuals with mean zero and constant variance σ2.

We estimate f (p, t) by minimizing a penalized sum of
square error functional J( f ), where the penalization takes
into account separately the regularity of the function in the
spatial and temporal domains. Various choices for the regu-
larizing terms in space and in time are possible. In this work,
we use simple isotropic and stationary regularizing terms in
both space and time. In particular, following Ramsay (2002),

Wood et al (2008) and Sangalli et al (2013), we use the spa-
tial roughness penalty

JS (g(p)) =
∫

Ω

(
∆g(p)

)2
dp, (2)

where g : Ω→R and the Laplacian ∆g(p)= ∂ 2g
∂x2 (p)+

∂ 2g
∂y2 (p)

provides a simple measure of the local curvature of g. Other
possible choices for spatial roughness penalties are, for in-
stance, that associated with thin plate splines, given by∫
R2(

∂ 2g
∂x2 (p))2+2( ∂ 2g

∂x∂y (p))
2+( ∂ 2g

∂y2 (p))2dp, or penalizations
involving more complex partial differential operators describ-
ing prior knowledge on the phenomenon under study (see,
e.g., Azzimonti et al (2015)). As for the temporal dimen-
sion, we here adopt the classical penalty

JT (h(t)) =
∫ T2

T1

(drh(t)
dtr

)2
dt , (3)

where h : [T1,T2] → R. See, e.g., Ramsay and Silverman
(2005), Chapter 5, for details.

The spatial penalty JS is applied to the spatio-temporal
function f (p, t) and then integrated over the temporal do-
main [T1,T2], and analogously the temporal penalty JT is ap-
plied to f (p, t) and then integrated over the spatial domain
Ω . The field f is thus estimated by minimizing the following
penalized sum of square error criterion:

J( f ) =
n

∑
i=1

m

∑
j=1

(
zi j− f (pi, t j)

)2
+

+ λS

∫ T2

T1

∫
Ω

(
∆ f (p, t)

)2
dpdt +

+ λT

∫
Ω

∫ T2

T1

(
∂ r f (p, t)

∂ tr

)2
dtdp, (4)

where λS > 0 and λT > 0 are two smoothing parameters that
weight the penalizations respectively in space and time. The
choice of these parameters will be discussed in Section 3.3.
As detailed in the following section, the regularizing terms
in (4) induce the space-time covariance structure of the es-
timator and different regularizations would imply different
covariance structures.

3 Numerical implementation of the model

We represent the spatio-temporal field f (p, t) as an expan-
sion on a separable space-time basis system. Specifically, let
{ϕk(t);k = 1, ...,M} be a set of M basis functions defined on
[T1,T2] and {ψl(p); l = 1, ...,N} a set of N basis functions
defined on Ω . Then, f is represented by the following basis
expansion:

f (p, t) =
N

∑
l=1

M

∑
k=1

clk ψl(p) ϕk(t), (5)

where {clk; l = 1, ...,N;k = 1, ...,M} are the coefficients of
the expansion on the separable spatio-temporal basis.



4 M. S. Bernardi, L. M. Sangalli, G. Mazza, J. O. Ramsay

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Bibione

San Michele
al Tagliamento

Pellestrina

Lido di Venezia

Murano
Cavallino−Treporti

Quarto D'Altino

Venice

Fig. 4: Simplified boundary of the Venice province.
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Fig. 5: Detail of the simplified boundary of the Venice
province.

3.1 Choice of the basis systems in space and time

Various possible bases can be used for the expansions in the
spatial and temporal domains. In this work, we use in space
a finite element basis on a triangulation Ωτ of the spatial
domain Ω of interest. This choice leads to an efficient dis-
cretization of the functional J and allows an accurate ac-
count of the shape of the spatial domain.

We illustrate the construction of such basis on Venice
domain. Before building the basis, we simplify the original

spatial domain represented in Figure 1, excluding the coastal
uninhabited regions and the smaller islands, and keeping in
the domain of study only the four major islands: Venice, Mu-
rano (at the north-east of Venice), Lido di Venezia (at the
south-east of Venice) and Pellestrina (at the south of Lido).
We then smooth the boundary of the domain with regression
splines. Finally, we obtain a piecewise linear boundary, sub-
sampling from this smooth curve so that the features charac-
terizing the domain are preserved. Figure 4 shows the sim-
plified boundary of Venice province, while Figure 5 shows
the detail around the city of Venice. This region is partic-
ularly interesting since it shows the four islands we keep
in the domain. Here the domain includes four bridges: one
linking Venice to the continent and the others linking some
of the islands between themselves; the first one is an actual
bridge with a road and a railway, while the other bridges
represent regular and frequent ferries among the islands.

A triangulation of the resulting simplified domain is then
obtained using the R package fdaPDE (Lila et al, 2016).
In particular, we start from a Delaunay triangulation, con-
strained within the simplified boundary, where each of the
town locations and each point defining the simplified bound-
ary become a triangle vertex. A more regular mesh is then
obtained with additional vertices, imposing a maximum value
to the triangle areas. Figure 6 displays the resulting triangu-
lation of Venice province. For this application, here and in
Section 7, instead of using as coordinates the latitude and
longitude, we employ the UTM coordinate system, which
allows to compute the distance between two points on the
Earth’s surface by means of the Euclidean distance instead
of the geodesic distance.
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Fig. 6: Triangulation of the Venice province.
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The finite element basis is composed by globally con-
tinuous functions that coincides with a polynomial of a cer-
tain degree on each element of the domain triangulation. In
particular we use here linear finite element basis, that are
piecewise linear functions. The dimension of the spatial ba-
sis is strictly related to the triangulation of the spatial do-
main: there is one basis function for each knot of the trian-
gulation; for linear finite elements, each basis is associated
to a vertex of the triangulation and has value 1 at that ver-
tex and 0 at all other vertices. Figure 7 shows an example of
linear basis function.

Fig. 7: Example of linear finite element basis function.

For the temporal dimension, we use here a cubic B-spline
basis with penalization of the second derivative, with knots
coinciding with the sampling time instants of the dataset.
Other basis systems may turn out to be more appropriate
in other applicative contexts. For instance, Fourier basis are
well suited to the case of cyclic data, possibly with penal-
ization of the harmonic acceleration operator, instead of the
order r derivative considered in (3).

In case of dense sampling schemes, in space or time,
coarser spatial or temporal grids may be preferred, for com-
putational saving. But in general, the number of coefficients
to be estimated, M×N, may be larger than the correspond-
ing number of observed data values m× n. This does not
create any problem from the estimation point of view, thanks
to the presence of the regularizing terms. We never experi-
enced any numerical instability of the method.

3.2 Discretization of the penalized sum-of-square error
functional

Let z be the vector of length nm of observed values at the
n×m spatio-temporal locations, f the vector of length nm
of evaluations of the spatio-temporal function f at the n×m
spatio-temporal locations, and c the vector of length NM of

coefficients of the basis expansion (5) of the spatio-temporal
field f , with entries ordered as follows

z =



z11
...

z1m
z21
...

z2m
...

znm


f =



f (p1, t1)
...

f (p1, tm)
f (p2, t1)

...
f (p2, tm)

...
f (pn, tm)


c =



c11
...

c1M
c21
...

c2M
...

cNM


.

Let Ψ be the n×N matrix of the evaluations of the N spatial
basis functions in the n space locations {pi; i = 1, ...,n},

Ψ =


ψ1(p1) ψ2(p1) . . . ψN(p1)

ψ1(p2) ψ2(p2) . . . ψN(p2)
...

... . . .
...

ψ1(pn) ψ2(pn) . . . ψN(pn)

 .
Moreover, define the vectors of length N of the spatial basis
functions ψψψ, and of their first order partial derivatives ψψψx
and ψψψy, by

ψψψ =


ψ1
ψ2
...

ψN

 ψψψx =


∂ψ1/∂x
∂ψ2/∂x

...
∂ψN/∂x

 ψψψy =


∂ψ1/∂y
∂ψ2/∂y

...
∂ψN/∂y

 .
Finally, let R0 be the N×N matrix of the integrals over Ωτ

of the cross products of the N spatial basis, i.e.,

R0 =
∫

Ωτ

ψψψψψψ
T . (6)

Analogously, let Φ be the m×M matrix of the evaluations of
the M temporal basis functions in the m time instants {t j; j =
1, ...,m}:

Φ =


ϕ1(t1) ϕ2(t1) . . . ϕM(t1)
ϕ1(t2) ϕ2(t2) . . . ϕM(t2)

...
... . . .

...
ϕ1(tm) ϕ2(tm) . . . ϕM(tm)

 .
Moreover, define the vectors of length M of the temporal
basis functions ϕϕϕ, and of their second order derivatives ϕϕϕ tt ,

by

ϕϕϕ =


ϕ1
ϕ2
...

ϕM

 ϕϕϕ tt =


d2ϕ1/dt2

d2ϕ2/dt2

...
d2ϕM/dt2

 .
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Finally, let K0 be the M×M matrix of the integrals over
[T1,T2] of the cross products of the M temporal basis, i.e.,

K0 =
∫ T2

T1

ϕϕϕϕϕϕ
T . (7)

Consider now the nm×NM matrix B = Ψ ⊗Φ , where ⊗
denotes the Kronecker product. Then f = Bc. We may then
rewrite the sum of square error functional J in (4) as

J = (z−Bc)T (z−Bc)+λScT (PS⊗K0)c+λT cT (R0⊗PT )c

= (z−Bc)T (z−Bc)+ cT Pc ,

(8)

where PS and PT are the matrix discretizations of the spatial
and temporal penalization terms, and P is the overall penalty
P= λS (PS⊗K0) + λT (R0⊗PT ). Specifically, the matrix PT
is obtained by direct discretization of the temporal penalty
term in (3):

PT =
∫ T2

T1

ϕϕϕ ttϕϕϕ
T
tt ;

see Ramsay and Silverman (2005) for details. For the ma-
trix PS, following Ramsay (2002) and Sangalli et al (2013),
we consider a computationally efficient discretization of the
spatial penalty term in (2), that does not involve the compu-
tation of second order derivatives of the basis functions, but
only of first order derivatives. This discretization is given by
PS = R1R−1

0 R1, where

R1 =
∫

Ωτ

(ψψψxψψψ
T
x +ψψψyψψψ

T
y ),

and it is based on a variational characterization of the esti-
mation problem; see Ramsay (2002) for details. This formu-
lation uses the Neumann condition at the boundary of the
domain of interest implying zero flow across the boundary.
Various other boundary conditions are possible; see Sangalli
et al (2013). As shown in Azzimonti et al (2015), in the finite
element space used to discretize the problem, the matrix PS
is in fact equivalent to the penalty matrix that would be ob-
tained as direct discretization of the penalty term in (2) and
(4) and involving the computation of second order deriva-
tives.

Finally, the coefficients vector ĉ that minimizes the func-
tional J in (8) is computed deriving J with respect to c and
setting the derivative equal to 0, obtaining

ĉ = (BT B+P)−1BT z.

3.3 Properties of the estimator

The estimator ĉ is linear in the observed data values z, and
has a typical penalized least-square form. Denote by Id the
identity matrix of dimension d. Since E[z] = f and Var[z] =
σ2Inm, we obtain

E[ĉ] = (BT B+P)−1BT f,
Var[ĉ] = σ

2(BT B+P)−1BT B(BT B+P)−1.

Consider the vector B(p, t) = ψψψ(p)T ⊗ϕϕϕ(t)T of evaluations
of the separable basis system at the spatio-temporal location
(p, t), with p ∈ Ω and t ∈ [T1,T2]. The estimate of the field
f at this generic location is thus given by

f̂ (p, t) = B(p, t)ĉ = B(p, t)(BT B+P)−1BT z

and its mean and variance are given by

E[ f̂ (p, t)] = B(p, t)(BT B+P)−1BT f
Var[ f̂ (p, t)] = σ

2B(p, t)(BT B+P)−1BT B(BT B+P)−1B(p, t)T .

(9)

The regularizing terms in (4) induce the space-time co-
variance structure of the estimator, given by

Cov[ f̂ (p1, t1), f̂ (p2, t2)] =

σ
2B(p1, t1)(BT B+P)−1BT B(BT B+P)−1B(p2, t2)T , (10)

where (p1, t1),(p2, t2) are two space-time locations in the
considered space-time domain and P is the discretization
of the chosen regularizing terms. Different regularizations
would imply different covariance structures. For instance,
Azzimonti et al (2015) consider a regularized spatial regres-
sion model and show that by changing the regularizing terms
and considering more complex differential operators it is
possible to include in the model a priori information about
the spatial variation of the phenomenon, and model also
anysotropies and non-stationarities. The proposed modelling
(1)-(4) jointly defines the first order structure and second or-
der structure of the estimator.

The smoothing matrix

S = B(BT B+P)−1BT

maps the vector of observed values z to the vector of fitted
values ẑ = f̂ = Sz. The trace of the smoothing matrix consti-
tutes a commonly used measure of the equivalent degrees of
freedom for linear estimators. We can thus estimate σ2 by

σ̂
2 =

1
nm− tr(S)

(z− ẑ)T (z− ẑ). (11)

This estimate of the error variance, plugged into (9), can
be used to compute approximate pointwise confidence in-
tervals for f . Moreover, the value of a new observation at
location point pn+1 ∈Ω and time instant tm+1 ∈ [T1,T2] can



A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province 7

be predicted by ẑn+1 m+1 = f̂ (pn+1, tm+1), and approximate
prediction intervals may be constructed.

Finally, the values of the smoothing parameters λS and
λT may be chosen via Generalized Cross-Validation (GCV),
searching for the values of λS,λT that minimize

GCV (λS,λT ) =
nm

(nm− tr(S))2 (z− ẑ)T (z− ẑ).

4 Model with covariates

The model described above can be easily extended to in-
clude space-time varying covariates. Consider the semi-para-
metric generalized additive model

zi j =wT
i j βββ + f (pi, t j) + εi j i= 1, ...,n, j = 1, ...,m, (12)

where wi j is a vector of q covariates associated to the obser-
vation zi j, at location pi and time instant t j, and βββ is a vector
of q regression coefficients. We can jointly estimate the vec-
tor of regression coefficient βββ and the spatio-temporal field
f by minimizing the following penalized sum of square er-
rors criterion

J( f ,βββ ) =
n

∑
i=1

m

∑
j=1

(
zi j−wT

i j βββ − f (pi, t j)
)2

+ (13)

+ λS

∫ T2

T1

∫
Ω

(
∆ f (p, t)

)2
dpdt + (14)

+ λT

∫
Ω

∫ T2

T1

(
∂ 2 f (p, t)

∂ t2

)2
dtdp . (15)

Let W be the nm×q matrix containing the vectors {wi j; i =
1, ...,n; j = 1, ...,m}:

W =



wT
11

wT
12
...

wT
1m

wT
21
...

wT
2m
...

wT
nm


.

Let HW be the matrix that projects orthogonally on the space
generated by the columns of W , i.e. HW = W (W TW )−1W T

and let Q = Inm−HW . The discretization of the functional
J( f ,βββ ) in (13) is given by

J = (z−Wβββ −Bc)T (z−Wβββ −Bc)+ cT Pc .

To compute the estimates of the vector of regression coeffi-
cients βββ and of the vector c of coefficients of the basis ex-
pansion of the spatio-temporal field f , we compute the first
partial derivatives of J with respect to βββ and c, and set them

equal to zero, getting the following explicit solution of the
estimation problem:

β̂ββ = (W TW )−1W T (z−Bĉ),
ĉ = (BT QB+P)−1BT Qz.

The estimator ĉ has a penalized least-square form; given ĉ,
the estimator β̂ββ has a least square form.

4.1 Properties of the estimator

Let Sf = B(BT QB+P)−1BT Q, so that

β̂ββ = (W TW )−1W T (Inm−Sf)z.

Since E[z] =Wβββ + f and Var[z] = σ2Inm, and exploiting the
fact that the matrix Q is idempotent and QW = 0, we obtain

E[ĉ] = (BT QB+P)−1BT Qf,
Var[ĉ] = σ

2(BT QB+P)−1BT QB(BT QB+P)−1

and

E[β̂ββ ] = βββ +(W TW )−1W T (Inm−Sf)f,
Var[β̂ββ ] = σ

2(W TW )−1 +σ
2(W TW )−1W T SfST

f W (W TW )−1.

(16)

The estimate of the field f and its distributional properties
follow as for the model without covariates. The smoothing
matrix S, such that ẑ = Sz, is now given by

S = HW +QSf.

The trace of this matrix is given by tr(S) = q+ tr(S f ) and
measures the edf of this estimator, given by the sum of the
q degrees of freedom corresponding to the parametric part
of the model and the tr(S f ) degrees of freedom correspond-
ing to the non-parametric part of the model. We can esti-
mate σ2 as in (11). Given this estimate, it is possible to
construct approximate pointwise confidence intervals for f
as in the case without covariates. Moreover, using σ̂2 in
(16), it is now also possible to compute approximate confi-
dence intervals for βββ . Finally, the value of a new observation
at location point pn+1 ∈ Ω and time instant tm+1 ∈ [T1,T2]

and with associated covariates wn+1 m+1 can be predicted
by ẑn+1 m+1 = wT

n+1 m+1 β̂ββ + f̂ (pn+1, tm+1), and approxi-
mate prediction intervals may be constructed.

5 A variation of the proposed ST-PDE model

A variation of the proposed ST-PDE model can be defined
as follows. Equivalently to (5), we can express the spatio-
temporal field f in the following basis expansions:

f (p, t) =
M

∑
k=1

ak(p) ϕk(t) (17)

f (p, t) =
N

∑
l=1

bl(t) ψl(p), (18)
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where {ak(p);k = 1, ...,M} are the spatially varying coeffi-
cients of the expansion of the space-time field on the tempo-
ral basis and {bl(t); l = 1, ...,N} are the temporally varying
coefficients of the expansion of the field on the spatial basis.
Then, in analogy with Augustin et al (2013) and Marra et al
(2012), we can apply the spatial penalty JS to the M spatially
varying coefficients ak(p) in the basis expansion (17), and
the temporal penalty JT to the N temporally varying coeffi-
cients bl(t) in the basis expansion (18). In this case, the field
f is thus estimated by minimizing the following penalized
sum of square error criterion:

J̃( f ) =
n

∑
i=1

m

∑
j=1

(
zi j− f (pi, t j)

)2
+

+λS

M

∑
k=1

∫
Ω

(
∆(ak(p))

)2
dp+λT

N

∑
l=1

∫ T2

T1

(drbl(t)
dtr

)2
dt .

(19)

The numerical implementation of this method has only
minor differences with the one presented in Section 3. De-
note by Id the identity matrix of dimension d. Then the dis-
cretized functional is given by

J̃ = (z−Bc)T (z−Bc)+λScT (PS⊗ IM)c+λT cT (IN⊗PT )c,

where the identity matrices IM and IN have replaced the ma-
trices K0 in (7) and in R0 in (6), respectively. Minimizing the
functional (19) is thus equivalent to minimizing the one in
(4) if the spatial and the temporal basis used for the numeri-
cal discretization are orthonormal. In this work we use basis
systems which are not orthonormal; nevertheless, the basis
systems considered are sparse, so that the terms∫ T2

T1

ϕk(t)ϕl(t) dt and
∫

Ω

ψl(p)ψk(p)dp

are nonzero only for a few couples of indexes (l,k) with
l 6= k. We compared the results of the two methods in all the
simulation studies in Section 6 obtaining the same perfor-
mances for the two methods in all cases. In the following
we show only the results for the ST-PDE method.

6 Simulation studies

We present some simulation studies and compare the pro-
posed model with three other approaches to spatio-temporal
field estimation.

The first method is spatio-temporal kriging with a sepa-
rable variogram marginally gaussian in space and exponen-
tial in time, chosen among a number of possible variogram
models, with parameters estimated from the empirical vari-
ogram. (The choice among different variograms was based

on visual inspection of the resulting estimates, avoiding wig-
gly estimates but requesting that the spatio-temporal behav-
ior of the field was well captured.) This method is imple-
mented using the function krigeST of the R package gstat
(Pebesma, 2004).

We then consider two space-time models presented in
Augustin et al (2013) and Marra et al (2012). One model
adopt a thin plate spline basis in space and a cubic spline
basis in time, and minimizes a functional analogous to (19),
where the spatial penalty is replaced by the thin plate spline
energy recalled in Section 2. The other model uses the soap
film smoothing described in Wood et al (2008) in space and
a cubic spline basis in time, and minimize the same func-
tional in (19). The two latter methods are implemented us-
ing the function gam of the R package mgcv (Wood, 2006).
Finally, for these two methods, as well as for the model here
proposed, the values of the smoothing parameters λS,λT are
chosen via GCV.

We apply the aforementioned methods to simulated data
on a C-shaped spatial domain. The test function, sampled
at a few time instants, is shown in the left panels of Figure
8, and its analytical expression is detailed in the Appendix.
This function is constructed starting from the spatial test
function considered for instance in Ramsay (2002), Wood
et al (2008) and Sangalli et al (2013), and introducing the
time component in a not separable way.

We present here five simulation studies: in the first two
cases we consider different sampling schemes, with fewer
or more observations in space and in time; in the third case
we include covariates; in the fourth case we consider corre-
lated noise; finally, in the fifth case we start from areal data
and consider the approximation consisting in assigning each
datum to the area centroid.

6.1 First simulation study

We sample 200 spatial locations uniformly in the C-shaped
domain at 9 time instants equally spaced from 0 to π . We
simulate the data from model (1), with a gaussian noise with
mean 0 and standard deviation 0.7.

Figure 8 shows in the first column the spatio-temporal
test function at the 9 sampling time instants, in the second
column the simulated data, and in the following columns the
corresponding estimates obtained by spatio-temporal krig-
ing (KRIG), the space-time model using thin plate spline
(TPS), the space-time model using soap film smoothing (SOAP),
and the space-time model here proposed (ST-PDE).
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Fig. 8: The spatio-temporal test function, the simulated data and the estimated functions with spatio-temporal kriging (KRIG),
space-time model using thin plate spline (TPS), space-time model using soap film smoothing (SOAP) and ST-PDE.
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Figure 9 shows the boxplots of the Root Mean Square
Errors (RMSE) of the space-time field estimates given by the
four methods over 50 replicates of the noise generation. The
RMSE is computed over a fine grid of the spatio-temporal
domain (step 0.05 in space and π/24 in time).

A visual inspection of the RMSE shows that SOAP and
ST-PDE methods give better estimates than KRIG and TPS.
The reason for this comparative advantage is apparent from
Figure 8. In fact, the KRIG and TPS methods, that do not
take into account the shape of the domain and smooth across
the two arms of the C-shaped domain, provide poor esti-
mates of the field when the true f is characterized by high
values in one of the two C arms and low values in the other
arm. The best estimates are provided by the ST-PDE model.

Fig. 9: First simulation study. Boxplots of the RMSE of the
estimates of the spatio-temporal field obtained by the four
tested methods: spatio-temporal kriging (KRIG), space-time
model using thin plate spline (TPS), space-time model using
soap film smoothing (SOAP) and ST-PDE.

6.2 Second simulation study: fewer spatial locations and
more time instants

In this second simulation case we perform the same simu-
lation study described in Section 6.1, but with fewer obser-
vations in space and more in time. Specifically, we consider
50 spatial locations uniformly distributed in the C-shaped
domain and 33 time instants equally spaced in the time in-
terval [0,π].

Figure 10 shows the boxplots of the RMSE of the space-
time field estimates over 50 replicates of the noise genera-
tion. The RMSE is computed over a fine grid of the spatio-
temporal domain (step 0.05 in space and π/64 in time). Also
in this case, SOAP and ST-PDE provide better estimates
than TPS and kriging, with ST-PDE returning the best es-
timates.

Fig. 10: Second simulation study: fewer spatial locations
and more time instants. Boxplots of the RMSE of the esti-
mates of the spatio-temporal field obtained by the four tested
methods.

6.3 Third simulation study: covariates

Within the same simulation setting described in Section 6.1,
we also perform a study including a space-time varying co-
variate. Specifically, the covariate used is the following space-
time function:

w(x,y, t) = cos(5x)

√
t +1

5
. (20)

We generate data from model (12), setting β = 1. The other
simulation specifications are as in Section 6.1. We here com-
pare the proposed ST-PDE method to the space-time models
using thin plate spline and soap film smoothing. We do not
instead consider the spatio-temporal kriging in this case be-
cause the function krigeST of the R package gstat cannot
handle covariates.

Figure 11 shows the boxplots of the RMSE of the space-
time field estimates over the 50 replicates of the noise gener-
ation. The RMSE is computed over the same fine grid of the
spatio-temporal domain used in Section 6.1. Likewise in the
simulation studies without covariates, SOAP and ST-PDE,
that account for the shape of the domain, provide better esti-
mates than TPS, that is instead blind to the domain structure.
The best estimates are provided by the ST-PDE model.

The RMSE of the estimates of β over the 50 replicates
are instead comparable for the three methods: 0.14 for TPS,
0.09 for both SOAP and ST-PDE. In the first simulation
replicate, the approximate 95% confidence interval for the
parameter β associated to the ST-PDE estimate is given by
[0.88,1.16].
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Fig. 11: Third simulation study: covariates. Boxplots of the
RMSE of the estimates of the spatio-temporal field obtained
by the three methods tested in this case: TPS, SOAP, ST-
PDE.

6.4 Fourth simulation study: correlated noise

We performed a fourth simulation study within the same set-
ting described in Section 6.1, but generating the additive
noise with a spatio-temporal covariance structure. We use
the function RFsimulate of the R package RandomFields
(Schlather et al, 2015) to generate a spatio-temporal random
field with mean zero and a stationary isotropic covariance
model belonging to the Matern family. The corresponding
covariance function, which depends on the distance r ≥ 0
between two points, is the following

C(r) =
√

2rK1

(√
2r
)
, (21)

where K1 is the modified Bessel function of second kind;
moreover we consider here an anisotropy matrix with stretch
arguments equal to 40 for the space components and equal
to 80 for the time component.

Figure 12 shows the boxplots of the RMSE of the space-
time field estimates over the 50 replicates of the noise gen-
eration. The RMSE is computed over the same fine grid of
the spatio-temporal domain used in Section 6.1.

The same observations made in the previous simulation
studies still hold in this case.

Fig. 12: Fourth simulation study: correlated noise. Boxplots
of the RMSE of the estimates of the spatio-temporal field
obtained by the four tested methods.

6.5 Fifth simulation study: areal data assigned to area
centroid

In this simulation study we generate areal data over sub-
domains of the spatial domain and assign each datum to a
point representing the center of the subdomain. This sim-
ulation study is devised to mimic our applicative context,
where, as detailed in the following section, we are lead to
approximate areal data by assigning them to point locations,
due to the unavailability of information concerning the sub-
domains shapes. We do not in general suggest to make such
an approximation, unless it is unavoidable. As detailed in
Section 8, in future research we intend to develop a model
extension to handle areal data. In any case, we show that also
in this approximated and simplified data setting, the model
proposed outperforms the competitor methods.

We sample 50 square (0.2× 0.2) spatial subdomains Di
uniformly distributed over the spatial C-shaped domain and
we compute their centers pi. Figure 13 represents the spatial
subdomains and their centers. We consider 9 time instants
{t1, ..., t9} equally spaced from 0 to π . We compute the data
in the following way:

zi j =
1
|Di|

∫
Di

f (p, t j)dp+ εi j i = 1, ...,50, j = 1, ...,9,

and assign each value zi j to the spatio-temporal location
(pi, t j). The noise has the same distribution as in the pre-
vious simulation studies.
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Fig. 13: Spatial subdomains.

Figure 14 shows the boxplots of the RMSE of the space-
time field estimates given by the four methods over 50 repli-
cates of the noise generation. The RMSE is computed over
the same fine grid of the spatio-temporal domain used in
Section 6.1.

Fig. 14: Fifth simulation study: areal data assigned to area
centroid. Boxplots of the RMSE of the estimates of the
spatio-temporal field obtained by the four tested methods:
spatio-temporal kriging (KRIG), space-time model using
thin plate spline (TPS), space-time model using soap film
smoothing (SOAP) and ST-PDE.

The results are analogous to the ones obtained in the pre-
vious simulation studies: SOAP and ST-PDE provide bet-
ter estimates than TPS and kriging, with kriging performing
worse than in the previous simulation cases considered. The
best estimates are also in this case provided by the ST-PDE
model.

7 Application to the analysis of the production of waste
in Venice province

We apply the ST-PDE method to the dataset of annual amount
of per capita municipal waste produced in the Venice province.

7.1 The Venice waste dataset

Open Data Veneto1 provides the gross and per capita annual
amount of municipal waste produced in each municipality
of the Venice province in the period from 1997 to 2011. We
here consider for the analysis the annual per capita munici-
pal waste, in kg per municipality resident.

Municipal waste includes that produced in houses and
public areas, but does not include special waste, i.e. indus-
trial, agricultural, construction and demolition waste, or haz-
ardous waste, for which there are special disposal programs.
Therefore, the data refer only to the urban area of the munic-
ipality, whilst they do not refer to the agricultural or indus-
trial areas in the municipality territories. Since no data iden-
tifying the urbanized areas of the municipalities is available,
we face here two possible simplifications of the problem. We
can either partition the Venice province in the municipality
territories and attribute each datum to the whole territory of
its municipality, or assign each datum to a point represent-
ing the center of the municipality. We here adopt the second
simplification. The spatial coordinates of the town centers
are available online2. As mentioned in Section 3, latitude
and longitude are converted into UTM coordinate system.

In some cases there are localities which do not constitute
a municipality on their own, but are under the jurisdiction of
another town. In this case, there are two or more main urban-
ized areas in the municipality territory. Some of these local-
ities are not negligible for the problem under analysis due
to their tourist relevance and their location on the domain;
for this reason we add them to the data. Specifically, we in-
clude the seaside town of Bibione, the eastern most village
indicated in Figure 1. This popular vacation destination falls
under the jurisdiction of the municipality of San Michele al
Tagliamento, north west of Bibione; the waste data consid-
ered for Bibione are a replicate of the data of San Michele
al Tagliamento. Moreover, we replicate the data of Venice
in the islands of Murano, Lido di Venezia and Pellestrina,
because of their tourist relevance and the particular shape of
the domain.

Since intuition suggests that the production of waste is
affected by tourism, we include in the model a covariate
which accounts for it. Specifically we consider the number
of beds in accommodation facilities (such as hotels, bed and
breakfast, guest houses, campings, etc.) divided by the num-
ber of residents. This ratio may be as large as 7 in some
tourist towns by the sea. The number of beds in accommo-
dation facilities is provided by Istat3, the Italian national in-
stitute for statistics.

1 http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-
totale-e-pro-capite-1997-2011

2 http://www.dossier.net/utilities/coordinate-geografiche/
3 http://www.istat.it/it/archivio/113712

http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-totale-e-pro-capite-1997-2011
http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-totale-e-pro-capite-1997-2011
http://www.dossier.net/utilities/coordinate-geografiche/
http://www.istat.it/it/archivio/113712
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Fig. 15: Estimated spatio-temporal field for the Venice waste data (yearly per capita production) at fixed time instants.
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Fig. 16: Temporal evolution of the estimated spatio-temporal field for the Venice waste data (yearly per capita production) at
fixed spatial locations.

7.2 Analysis of Venice waste data by ST-PDE

Figure 15 shows the estimated spatio-temporal field at fixed
time instants. The estimate for the coefficient β is 39.7 mean-
ing that one more unit in the ratio between the number of
beds in accommodation facilities and the number of resi-
dents is estimated to increase the yearly per capita produc-
tion of waste by residents by about 40kg. The estimated spa-
tial field f shows the highest values, across the years, in cor-
respondence of the coastline, around the towns of Bibione,
Lido di Jesolo and Cavallino-Treporti. These higher values
may be due to a type of tourism that is not captured by
the available covariate, such as daily tourists who do not
stay overnight, and vacationers who either own or rent vaca-
tion houses. The higher values of the field are also probably
due to the presence of many seasonal workers, working in
accommodation facilities, restaurants, cafés, shops, beach
resorts and other services, who are not residents of these
towns.

Although Venice is one of the most visited cities in Italy,
and this tourism is active all year round, the production of

per capita waste in Venice appears to be lower than in other
nearby tourist localities by the seaside. This might be partly
explained by the fact that the tourist activities in Venice are
not so highly characterized by seasonality as in the smaller
seaside villages, and people working in tourist activities in
Venice are more likely to be themselves residents of this
large city.

It is significant to notice how the estimated function does
not smooth across concave boundaries. For example, the area
of the city of Quarto d’Altino and the one around the city of
Cavallino-Treporti show different ranges of values. Indeed,
even though the two towns are geographically close, they
are separated by the Venetian lagoon. This difference is evi-
dent also from the first two panels of Figure 16, which shows
the estimated spatio-temporal field at fixed localities: Quarto
d’Altino, Cavallino-Treporti, Venice and Bibione. In these
plots the red dots are obtained subtracting from the data the
estimated contribution by the covariate, i.e. β̂wi j.

The temporal evolution plots in Figure 16 show the abil-
ity of the method to capture the temporal trend of the phe-
nomenon. The method provides good estimates also for the
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municipality of Cavallino-Treporti, which presents a strong
variation of per capita waste over the year. The large increase
of the per capita waste of Cavallino-Treporti is partly ex-
plained by the fact that, during the first years of this study,
this town was under the jurisdiction of Venice, while the data
for this new municipality are available only from 2002. In
particular, the data for Cavallino-Treporti for years 1997 to
2001 are a replicate of the data of the municipality of Venice.
Nevertheless, the strong variation in the data is well captured
by the estimated function.

8 Model extensions

Various extensions of the proposed model are possible. A
first generalization consists in modelling data that are areal
in space and integral in time, and estimating an underly-
ing spatio-temporal intensity function. In the application to
Venice waste data, if information about the urbanized areas
of each municipality would become available, such a model
extension would for instance allow to appropriately refer the
waste datum to the area and year where it is produced, esti-
mating a spatio-temporal intensity of waste production.

Extending the work of Azzimonti et al (2015) it is also
possible to include a priori information available on the phe-
nomenon under study, using more complex differential reg-
ularizations modelling the space and/or time behavior of the
phenomenon. This also allows to account for non-stationarit-
ies and anisotropies in space and/or time. Along the same
lines, if a priori information about the interaction between
space and time was available, then it would make sense to
consider a unique space/time regularizing term based on a
time-dependent PDE that governs the phenomenon behav-
ior. Azzimonti et al (2015) for instance analyze the blood
flow velocity in a section of the carotid artery at a fixed
time instant corresponding to the systolic peak, starting from
Echo-Color Doppler data, and including a priori information
on the problem under study. By introducing the time dimen-
sion, we could study how the blood flow velocity field varies
during the time of the heart-beat. PDEs are commonly used
to describe complex phenomena behavior in many fields of
engineering and sciences, including bio-sciences, geo-sci-
ences, and physical sciences. Potential applications of par-
ticular interest of this space-time technique in the environ-
mental sciences would for example concern the study of the
dispersion of pollutant released in water or in air and trans-
ported by streams or winds, and the study of the propagation
of earthquakes, tsunamis, and other wave phenomena. If one
wishes instead to consider simpler isotropic and stationary
regularizations, then a possibility to allow for stronger in-
teractions in space/time, with respect to the model here pre-
sented, would consists in defining a unique regularizing term
based on a heat equation.

Finally, data distributed over curved domains, instead
of over planar domains, could be handled by extending the
model proposed in Ettinger et al (2016). Considering the
same application presented by Ettinger et al (2016) and Dassi
et al (2015), this would permit the study of time-dependent
hemodynamic forces exerted by blood-flow over the wall of
inner carotid arteries affected by aneurysms, taking into ac-
count the complex morphology of these vessels. Another
fascinating field of application of this modelling extension
would be in the neurosciences, studying signals associated
to neuronal activity over the cortical surface, a highly con-
voluted thin sheet of neural tissue that constitutes the outer-
most part of the brain. In the geo-sciences, this would permit
the study of data distributed over regions with complex oro-
graphies. Moreover, generalizations to time-dependent data
of the spatial regression model introduced by Wilhelm et al
(2016) would also further broaden the applicability of the
proposed model to important engineering applications, es-
pecially in the automotive, naval, aircraft and space sectors,
where space-time varying quantities of interest are observed
over the surface of a designed 3D object, such as the pres-
sure over the surface of a shuttle winglet.
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A Spatio-temporal test function

The spatio-temporal test function f (x,y, t), defined over the C-shaped
domain, used in the simulation studies, is constructed as:

cos(t)(q+ x)+(y− r)2 if x≥ 0 & y > 0
cos(2t)(−q− x)+(−y− r)2 if x≥ 0 & y≤ 0
cos(t)(−arctan( y

x )r)+(
√

x2 + y2− r)2K(x,y) if x < 0 & y > 0
cos(2t)(−arctan( y

x )r)+(
√

x2 + y2− r)2K(x,y) if x < 0 & y≤ 0

,

where K(x,y) = ( y
r0
1|y|≤r0&x>−r +1|y|>r0||x≤−r)

2, 1A denotes the indi-
cator function of the subset A, r0 = 0.1, r = 0.5 and q = πr

2 .
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