12 research outputs found

    Naphthoquinone Derivatives Exert Their Antitrypanosomal Activity via a Multi-Target Mechanism

    Get PDF
    BACKGROUND AND METHODOLOGY: Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED(50) of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach. PRINCIPAL FINDINGS: A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC(50) values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity. CONCLUSIONS AND SIGNIFICANCE: Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands

    The characterization and evolutionary relationships of a trypanosomal thiolase

    No full text
    Thiolases are enzymes that remove an acetyl-coenzyme A group from acyl-CoA in the catabolic β-oxidation of fatty acids, or catalyse the reverse condensation reaction for anabolic processes such as the biosynthesis of sterols and ketone bodies. In humans, six homologous isoforms of thiolase have been described, differing from each other in sequence, oligomeric state, substrate specificity and subcellular localization. A bioinformatics analysis of parasite genomes, being (i) different species of African trypanosomes, (ii) Trypanosoma cruzi and (iii) Leishmania spp., using the six human sequences as queries, showed that the distribution of thiolases in human and each of the studied Trypanosomatidae is completely different. Only one of these isoforms, called SCP2-thiolase, was found in each of the Trypanosomatidae, whereas the TFE-thiolase was also found in T. cruzi and Leishmania spp., and the AB-thiolase only in T. cruzi. Each of the trypanosomatid thiolases clusters with its orthologues from other organisms in a phylogenetic analysis and shares with them the isoform-specific sequence fingerprints. The single T. brucei SCP2-thiolase has been expressed in Escherichia coli and characterized. It shows activity in both the degradative and synthetic directions. Transcripts of this thiolase were detected in both bloodstream- and procyclic-form trypanosomes, but the protein was found only in the procyclic form. The encoded protein has both a predicted N-terminal mitochondrial signal peptide and a C-terminal candidate type 1 peroxisomal-targeting signal for sorting it into glycosomes. However experimentally, only a mitochondrial localization was found for both procyclic trypanosomes grown with glucose and cells cultured with amino acids as an energy source. When the thiolase expression in procyclic cells was knocked down by RNA interference, no important change in growth rate occurred, irrespective of whether the cells were grown with or without glucose, indicating that the metabolic pathway(s) involving this enzyme is/are not essential for the parasite under either of these growth conditions. © 2011 Australian Society for Parasitology Inc

    Crystallographic substrate binding studies of Leishmania mexicana SCP2-thiolase (type-2):unique features of oxyanion hole-1

    No full text
    Abstract Structures of the C123A variant of the dimeric Leishmania mexicana SCP2-thiolase (type-2) (Lm-thiolase), complexed with acetyl-CoA and acetoacetyl-CoA, respectively, are reported. The catalytic site of thiolase contains two oxyanion holes, OAH1 and OAH2, which are important for catalysis. The two structures reveal for the first time the hydrogen bond interactions of the CoA-thioester oxygen atom of the substrate with the hydrogen bond donors of OAH1 of a CHH-thiolase. The amino acid sequence fingerprints (CxS, NEAF, GHP) of three catalytic loops identify the active site geometry of the well-studied CNH-thiolases, whereas SCP2-thiolases (type-1, type-2) are classified as CHH-thiolases, having as corresponding fingerprints CxS, HDCF and GHP. In all thiolases, OAH2 is formed by the main chain NH groups of two catalytic loops. In the well-studied CNH-thiolases, OAH1 is formed by a water (of the Wat-Asn(NEAF) dyad) and NE2 (of the GHP-histidine). In the two described liganded Lm-thiolase structures, it is seen that in this CHH-thiolase, OAH1 is formed by NE2 of His338 (HDCF) and His388 (GHP). Analysis of the OAH1 hydrogen bond networks suggests that the GHP-histidine is doubly protonated and positively charged in these complexes, whereas the HDCF histidine is neutral and singly protonated

    The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control.

    Get PDF
    International audienceThe Trypanosoma brucei procyclic form resides within the digestive tract of its insect vector, where it exploits amino acids as carbon sources. Threonine is the amino acid most rapidly consumed by this parasite, however its role is poorly understood. Here, we show that the procyclic trypanosomes grown in rich medium only use glucose and threonine for lipid biosynthesis, with threonine's contribution being ∼ 2.5 times higher than that of glucose. A combination of reverse genetics and NMR analysis of excreted end-products from threonine and glucose metabolism, shows that acetate, which feeds lipid biosynthesis, is also produced primarily from threonine. Interestingly, the first enzymatic step of the threonine degradation pathway, threonine dehydrogenase (TDH, EC 1.1.1.103), is under metabolic control and plays a key role in the rate of catabolism. Indeed, a trypanosome mutant deleted for the phosphoenolpyruvate decarboxylase gene (PEPCK, EC 4.1.1.49) shows a 1.7-fold and twofold decrease of TDH protein level and activity, respectively, associated with a 1.8-fold reduction in threonine-derived acetate production. We conclude that TDH expression is under control and can be downregulated in response to metabolic perturbations, such as in the PEPCK mutant in which the glycolytic metabolic flux was redirected towards acetate production

    De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form:carbon source preferences and metabolic flux redistributions

    Get PDF
    Abstract De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway

    Inhibition of the targets by B6.

    No full text
    <p>(<b>A</b>) Representative dose-response curve for the inhibition of TbGK by B6. The mean IC<sub>50</sub> was found to be 0.9±0.3 µM. (<b>B</b>) Representative dose-response curve for the inhibition of TbGAPDH by B6 under standard conditions with the standard deviation for each point of the curve (blue curve). The IC<sub>50</sub> was found to be 7.25±1.62 µM. Representative dose-response curve for the inhibition of TbGAPDH by B6 after dilution 1∶10 of enzyme and inhibitor (red curve). The IC<sub>50</sub> value was 9.98±3.53 µM, which is very close to that measured in the standard assay, demonstrating that B6 could act as a tight binder.</p

    Kinetic analysis of the inhibition mechanism of B6 on TbGAPDH.

    No full text
    <p>The two panels show representative plots of 1/<i>v</i> vs. 1/[NADH] (<b>A</b>) and 1/<i>v</i> vs. 1/[3-PGA] (<b>B</b>) at different inhibitor concentrations. B6 behaves as a non-competitive inhibitor (mixed type) with respect to NADH and 3-PGA, exhibiting an α value of 0.6 and 0.4, respectively. The factor α describes the effect of the inhibitor on the affinity of the substrate toward the enzyme and the effect of the substrate on the inhibitor affinity for the enzyme <a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0002012#pntd.0002012-Copeland1" target="_blank">[51]</a>.</p

    Inhibition mechanism hypothesis.

    No full text
    <p>(<b>A</b>) The best-ranked docking pose of B6 at TbGAPDH active site. Cysteine 166 is a key amino acid in the active site and might covalently bind B6 after a nucleophilic attack of the thiolate to the quinone. (<b>B</b>) Possible mechanism of covalent bond formation via Michael reaction or nucleophilic substitution.</p
    corecore