78 research outputs found

    TRIF adaptor signaling is important in abdominal aortic aneurysm formation

    Get PDF
    Objective: Abdominal aortic aneurysm (AAA) is characterized by inflammation, loss of smooth muscle cells (SMCs), and degradation of the extracellular matrix in the vessel wall. Innate immune receptors such as Toll-like receptors (TLRs) were recently shown to regulate immunological processes leading to the formation and progression of atherosclerotic plaques as well as to other cardiovascular pathologies. Our aim was to investigate whether blockage of TLR signaling, under the control of TIR domain-containing adaptor protein including IFN-beta (TRIF), could inhibit the inflammatory response and AAA development in mice. Results: In human AAA, an increased TLR3 and TLR4 expression in association with macrophages and T lymphocytes was demonstrated with immunohistochemical analysis. Angiotensin (Ang) II-induced aneurysm formation was significantly reduced by 30% in ApoE(-/-)Trif(-/-) mice compared to ApoE(-/-) mice. Morphologically, AngII-infused ApoE(-/-)Trif(-/-) mice had a more intact cellular and extracellular matrix while ApoE(-/-) mice infused with AngII displayed an increased medial thickness associated with aortic dissection, thrombus formation, and a more disorganized vessel wall. Gene expression analysis of the abdominal aorta revealed a profound decrease of the inflammatory genes CD68 (P <0.05), CD11b (P <0.05), and TNF-alpha (P <0.05) and the protease gene MMP-12 (P <0.01) in ApoE(-/-)Trif(-/-) mice compared to ApoE(-/-) mice infused with AngII. Conclusion: Our results suggest that signaling through TRIF is important for the inflammatory response of AngII-induced AAA and that blockage of the TRIF pathway reduces vascular inflammation and protects against AAA formation. (C) 2015 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe

    Lysophosphatidylcholine in phospholipase A(2)-modified LDL triggers secretion of angiopoietin 2

    Get PDF
    Background and aims: Secretory phospholipase A(2) (PLA(2)) hydrolyzes LDL phospholipids generating modified LDL particles (PLA(2)-LDL) with increased atherogenic properties. Exocytosis of Weibel-Palade bodies (WPB) releases angiopoietin 2 (Ang2) and externalizes P-selectin, which both play important roles in vascular inflammation. Here, we investigated the effects of PLA(2)-LDL on exocytosis of WPBs. Methods: Human coronary artery endothelial cells (HCAECs) were stimulated with PLA(2)-LDL, and its uptake and effect on Ang2 release, leukocyte adhesion, and intracellular calcium levels were measured. The effects of PLA(2)-LDL on Ang2 release and WPB exocytosis were measured in and ex vivo in mice. Results: Exposure of HCAECs to PLA(2)-LDL triggered Ang2 secretion and promoted leukocyte-HCAEC interaction. Lysophosphatidylcholine was identified as a critical component of PLA(2)-LDL regulating the WPB exocytosis, which was mediated by cell-surface proteoglycans, phospholipase C, intracellular calcium, and cytoskeletal remodeling. PLA(2)-LDL also induced murine endothelial WPB exocytosis in blood vessels in and ex vivo, as evidenced by secretion of Ang2 in vivo, P-selectin translocation to plasma membrane in intact endothelial cells in thoracic artery and tracheal vessels, and reduced Ang2 staining in tracheal endothelial cells. Finally, in contrast to normal human coronary arteries, in which Ang2 was present only in the endothelial layer, at sites of advanced atherosclerotic lesions, Ang2 was detected also in the intima, media, and adventitia. Conclusions: Our studies reveal PLA(2)-LDL as a potent agonist of endothelial WPB exocytosis, resulting in increased secretion of Ang2 and translocation of P-selectin. The results provide mechanistic insight into PLA(2)-LDL-dependent promotion of vascular inflammation and atherosclerosis.Peer reviewe

    Persistence of health inequalities in childhood injury in the UK: a population-based cohort study of children under 5

    Get PDF
    BACKGROUND: Injury is a significant cause of childhood death and can result in substantial long-term disability. Injuries are more common in children from socio-economically deprived families, contributing to health inequalities between the most and least affluent. However, little is known about how the relationship between injuries and deprivation has changed over time in the UK. METHODS: We conducted a cohort study of all children under 5 registered in one of 495 UK general practices that contributed medical data to The Health Improvement Network database between 1990–2009. We estimated the incidence of fractures, burns and poisonings by age, sex, socio-economic group and calendar period and adjusted incidence rate ratios (IRR) comparing the least and most socio-economically deprived areas over time. Estimates of the UK annual burden of injuries and the excess burden attributable to deprivation were derived from incidence rates. RESULTS: The cohort of 979,383 children experienced 20,804 fractures, 15,880 burns and 10,155 poisonings, equating to an incidence of 75.8/10,000 person-years (95% confidence interval 74.8–76.9) for fractures, 57.9 (57.0–58.9) for burns and 37.3 (35.6–38.0) for poisonings. Incidence rates decreased over time for burns and poisonings and increased for fractures (p<0.001 test for trend for each injury). They were significantly higher in more deprived households (IRR test for trend p<0.001 for each injury type) and these gradients persisted over time. We estimate that 865 fractures, 3,763 burns and 3,043 poisonings could be prevented each year in the UK if incidence rates could be reduced to those of the most affluent areas. CONCLUSIONS: The incidence of burns and poisonings declined between 1990 and 2009 but increased for fractures. Despite these changes, strong socio-economic inequalities persisted resulting in an estimated 9,000 additional medically-attended injuries per year in under-5s

    Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans

    Get PDF
    Aneurysm of the abdominal aorta (AAA) is a particular, specifically localized form of atherothrombosis, providing a unique human model of this disease. The pathogenesis of AAA is characterized by a breakdown of the extracellular matrix due to an excessive proteolytic activity, leading to potential arterial wall rupture. The roles of matrix metalloproteinases and plasmin generation in progression of AAA have been demonstrated both in animal models and in clinical studies. In the present review, we highlight recent studies addressing the role of the haemoglobin-rich, intraluminal thrombus and the adventitial response in the development of human AAA. The intraluminal thrombus exerts its pathogenic effect through platelet activation, fibrin formation, binding of plasminogen and its activators, and trapping of erythrocytes and neutrophils, leading to oxidative and proteolytic injury of the arterial wall. These events occur mainly at the intraluminal thrombus–circulating blood interface, and pathological mediators are conveyed outwards, where they promote matrix degradation of the arterial wall. In response, neo-angiogenesis, phagocytosis by mononuclear cells, and a shift from innate to adaptive immunity in the adventitia are observed. Abdominal aortic aneurysm thus represents an accessible spatiotemporal model of human atherothrombotic progression towards clinical events, the study of which should allow further understanding of its pathogenesis and the translation of pathogenic biological activities into diagnostic and therapeutic applications
    • …
    corecore