77 research outputs found

    Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency

    Get PDF
    Cystathionine β-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 μL of plasma using a stable isotope substrate - 2,3,3-2H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-2H-cystathionine, using LC-MS/MS. The median enzyme activity in control plasma samples was 404 nmol/h/L (range 66–1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol/ho/L (range 0–9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol/hour/L (range 0–358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5′-phosphate, and by configuration of the detected reaction product, 3,3-2H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency

    Samsung and University of Edinburgh’s System for the IWSLT 2019

    Get PDF
    This paper describes the joint submission to the IWSLT 2019 English to Czech task by Samsung R&D Institute, Poland, and the University of Edinburgh. Our submission was ultimately produced by combining four Transformer systems through a mixture of ensembling and reranking

    Growth Patterns in the Irish Pyridoxine Nonresponsive Homocystinuria Population and the Influence of Metabolic Control and Protein Intake

    Get PDF
    A low methionine diet is the mainstay of treatment for pyridoxine nonresponsive homocystinuria (HCU). There are various guidelines for recommended protein intakes for HCU and clinical practice varies. Poor growth has been associated with low cystine levels. This retrospective review of 48 Irish pyridoxine nonresponsive HCU patients assessed weight, height, body mass index (BMI), protein intake, and metabolic control up to 18 years at nine set time points. Patients diagnosed through newborn screening (NBS) were compared to late diagnosed (LD) patients. At 18 years the LD group (n=12, mean age at diagnosis 5.09 years) were heavier (estimated effect +4.97 Kg, P=0.0058) and taller (estimated effect +7.97 cm P=0.0204) than the NBS group (n=36). There was no difference in growth rate between the groups after 10 years of age. The HCU population were heavier and taller than the general population by one standard deviation with no difference in BMI. There was no association between intermittently low cystine levels and height. Three protein intake guidelines were compared; there was no difference in adult height between those who met the lowest of the guidelines (Genetic Metabolic Dietitians International) and those with a higher protein intake

    UV Irradiation Induces a Non-coding RNA that Functionally Opposes the Protein Encoded by the Same Gene

    Get PDF
    The transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ∼25 kb is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter ALE isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The non-coding ASCC3 isoform counteracts the function of the protein-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and non-coding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage

    Comprehensive Evaluation of One-Carbon Metabolism Pathway Gene Variants and Renal Cell Cancer Risk

    Get PDF
    Folate and one-carbon metabolism are linked to cancer risk through their integral role in DNA synthesis and methylation. Variation in one-carbon metabolism genes, particularly MTHFR, has been associated with risk of a number of cancers in epidemiologic studies, but little is known regarding renal cancer.Tag single nucleotide polymorphisms (SNPs) selected to produce high genomic coverage of 13 gene regions of one-carbon metabolism (ALDH1L1, BHMT, CBS, FOLR1, MTHFR, MTR, MTRR, SHMT1, SLC19A1, TYMS) and the closely associated glutathione synthesis pathway (CTH, GGH, GSS) were genotyped for 777 renal cell carcinoma (RCC) cases and 1,035 controls in the Central and Eastern European Renal Cancer case-control study. Associations of individual SNPs (n = 163) with RCC risk were calculated using unconditional logistic regression adjusted for age, sex and study center. Minimum p-value permutation (Min-P) tests were used to identify gene regions associated with risk, and haplotypes were evaluated within these genes.The strongest associations with RCC risk were observed for SLC19A1 (P(min-P) = 0.03) and MTHFR (P(min-P) = 0.13). A haplotype consisting of four SNPs in SLC19A1 (rs12483553, rs2838950, rs2838951, and rs17004785) was associated with a 37% increased risk (p = 0.02), and exploratory stratified analysis suggested the association was only significant among those in the lowest tertile of vegetable intake.To our knowledge, this is the first study to comprehensively examine variation in one-carbon metabolism genes in relation to RCC risk. We identified a novel association with SLC19A1, which is important for transport of folate into cells. Replication in other populations is required to confirm these findings

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Solution luminescence of inorganic species

    No full text
    Imperial Users onl

    Clinical Chemistry In Diagnosis And Treatment

    No full text
    V.449 hal;25 c

    Clinical chemistry in diagnosis and treatment

    No full text
    xii+468hlm.;24c
    • …
    corecore