430 research outputs found

    Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip

    Get PDF
    The intestinal epithelium is a critical component of the gut barrier. Composed of a single layer of intestinal epithelial cells (IECs) held together by tight junctions, this delicate structure prevents the transfer of harmful microorganisms, antigens, and toxins from the gut lumen into the circulation. The equilibrium between the rate of apoptosis and shedding of senescent epithelial cells at the villus tip, and the generation of new cells in the crypt, is key to maintaining tissue homeostasis. However, in both localized and systemic inflammation, this balance may be disturbed as a result of pathological IEC shedding. Shedding of IECs from the epithelial monolayer may cause transient gaps or microerosions in the epithelial barrier, resulting in increased intestinal permeability. Although pathological IEC shedding has been observed in mouse models of inflammation and human intestinal conditions such as inflammatory bowel disease, understanding of the underlying mechanisms remains limited. This process may also be an important contributor to systemic and intestinal inflammatory diseases and gut barrier dysfunction in domestic animal species. This review aims to summarize current knowledge about intestinal epithelial cell shedding, its significance in gut barrier dysfunction and host-microbial interactions, and where research in this field is directed

    Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity.

    Get PDF
    The intestinal epithelium forms a barrier between the microbiota and the rest of the body. In addition, beyond acting as a physical barrier, the function of intestinal epithelial cells (IECs) in sensing and responding to microbial signals is increasingly appreciated and likely has numerous implications for the vast network of immune cells within and below the intestinal epithelium. IECs also respond to factors produced by immune cells, and these can regulate IEC barrier function, proliferation and differentiation, as well as influence the composition of the microbiota. The mechanisms involved in IEC-microbe-immune interactions, however, are not fully characterized. In this review, we explore the ability of IECs to direct intestinal homeostasis by orchestrating communication between intestinal microbes and mucosal innate and adaptive immune cells during physiological and inflammatory conditions. We focus primarily on the most recent findings and call attention to the numerous remaining unknowns regarding the complex crosstalk between IECs, the microbiota and intestinal immune cells

    Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review

    Get PDF
    Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations

    First trimester placental endothelial cells from pregnancies with abnormal uterine artery Doppler are more sensitive to apoptotic stimuli.

    Get PDF
    Failure of the placental capillary network to develop normally is associated with early onset fetal growth restriction (FGR) and pre-eclampsia (PE). Although the symptoms are observed at term, the problem begins in the first trimester. However, investigations at this clinically relevant time are hindered by difficulties in identifying earlystage pregnancies that are at risk of developing FGR/PE. Using uterine artery Doppler ultrasound in the first trimester as a proxy measure of poor placentation, we have identified pregnancies at increased risk of developing early onset FGR/PE. Placental endothelial cells (PEC) isolated from pregnancies at increased risk of developing FGR/PE grew more slowly and their basal rate of apoptosis was significantly higher than that seen in the normal group. The pro-apoptotic stimulus, TNFα, induced apoptosis in cells from both groups but this was significantly greater in the high risk group. TNF receptor expression was unaffected. Inhibition of nitric oxide (NO) production significantly increased the sensitivity of cells from the normal pregnancies to TNFα but not in the high risk group establishing a functional role for NO in this system. In conclusion, first trimester PEC from pregnancies at increased risk of developing early onset FGR/PE were inherently more sensitive to apoptotic stimuli and this was functionally linked to the synthesis of NO. This may contribute to the poor placental vascular development seen in on going pregnancies

    Novel 3D Microscopic Analysis of Human Placental Villous Trees Reveals Unexpected Significance of Branching Angles

    Get PDF
    The villous trees of human placentas delineate the fetomaternal border and are complex three-dimensional (3D) structures. Thus far, they have primarily been analyzed as thin, two-dimensional (2D) histological sections. However, 2D sections cannot provide access to key aspects such as branching nodes and branch order. Using samples taken from 50 normal human placentas at birth, in the present study we show that analysis procedures for 3D reconstruction of neuronal dendritic trees can also be used for analyzing trees of human placentas. Nodes and their branches (e.g., branching hierarchy, branching angles, diameters, and lengths of branches) can be efficiently measured in whole-mount preparations of isolated villous trees using high-end light microscopy. Such data differ qualitatively from the data obtainable from histological sections and go substantially beyond the morphological horizon of such histological data. Unexpectedly, branching angles of terminal branches of villous trees varied inversely with the fetoplacental weight ratio, a widely used clinical parameter. Since branching angles have never before been determined in the human placenta, this result requires further detailed studies in order to fully understand its impact

    Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice

    Get PDF
    <div><p>Objective</p><p>Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring.</p><p>Methods</p><p>Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.</p><p>Results</p><p>Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10<sup>-2</sup>; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10<sup>-2</sup>). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR).</p><p>Conclusions</p><p>A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the <i>in vivo</i> pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.</p></div

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Is Fetal Growth Restriction Associated with a More Severe Maternal Phenotype in the Setting of Early Onset Pre-Eclampsia? A Retrospective Study

    Get PDF
    BACKGROUND: Both pre-eclampsia and fetal growth restriction are thought to result from abnormal placental implantation in early pregnancy. Consistent with this shared pathophysiology, it is not uncommon to see growth restriction further confound the course of pre-eclampsia and vice versa. It has been previously suggested that superimposed growth restriction is associated with a more severe pre-eclamptic phenotype, however this has not been a consistent finding. Therefore, we set out to determine whether the presence of fetal growth restriction among women with severe early-onset pre-eclampsia was associated with more severe maternal disease compared to those without a growth-restricted fetus. METHODS AND FINDINGS: We undertook a retrospective cohort study of women presenting to a tertiary hospital with severe early-onset pre-eclampsia (<34 weeks' gestation) between 2005-2009. We collected clinical data, including severity of pre-eclampsia, maternal and neonatal outcomes. Of 176 cases of severe pre-eclampsia, 39% (n = 68) were further complicated by fetal growth restriction. However, no significant difference was seen in relation to the severity of pre-eclampsia between those with or without a growth-restricted baby. The presence of concomitant growth restriction was however associated with a significantly increased risk of stillbirth (p = 0.003) and total perinatal mortality (p = 0.02). CONCLUSIONS: The presence of fetal growth restriction among women with severe early-onset pre-eclampsia is not associated with increased severity of maternal disease. However the incidence of stillbirth and perinatal death is significantly increased in this sub-population

    Intrauterine growth restriction and placental angiogenesis

    Get PDF
    Background: Vascular endothelial growth factor (VEGF), basic-fibroblast growth factor (b-FGF), and endothelial nitric oxide synthase (eNOS) are factors that take part in placental angiogenesis. They are highly expressed during embryonic and fetal development, especially in the first trimester. In this study, we aimed to investigate the role of placental angiogenesis in the development of intrauterine growth restriction (IUGR) by comparing the levels of expression of VEGF-A, b-FGF, and eNOS in normal-term pregnancy and IUGR placentas.Methods: The expression of VEGF-A, b-FGF, and eNOS was studied using the avidin-biotin-peroxidase method in placental tissues diagnosed as normal (n = 55) and IUGR (n = 55). Results were evaluated in a semi-quantitative manner.Results: The expression of all the markers was significantly higher (p < 0.001) in cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, vascular smooth muscle cells, chorionic villous stromal cells, and villous vascular endothelial cells of the IUGR placentas when compared with those collected from normal-term pregnancies.Conclusion: Increased expression of VEGF-A, b-FGF, and eNOS may be the result of inadequate uteroplacental perfusion, supporting the proposal that abnormal angiogenesis plays a role in the pathophysiology of IUGR. © 2010 Barut et al; licensee BioMed Central Ltd
    corecore