2,891 research outputs found

    Feed system design and experimental results in the uhf model study for the proposed Urbana phased array

    Get PDF
    The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used

    Effects of aircraft noise on flight and ground structures

    Get PDF
    Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft

    Are infestations of Cymomelanodactylus killing Acropora cytherea in the Chagos archipelago?

    Get PDF
    Associations between branching corals and infaunal crabs are well known, mostly due to the beneficial effects of Trapezia and Tetralia crabs in protecting host corals from crown-of-thorns starfish (e.g., Pratchett et al. 2000) and/or sedimentation (Stewart et al. 2006). These crabs are obligate associates of live corals and highly prevalent across suitable coral hosts, with 1–2 individuals per colony (Patton 1994). Cymo melanodactylus (Fig. 1) are also prevalent in branching corals, mostly Acropora, and are known to feed on live coral tissue, but are generally found in low abundance (<3 per colony) and do not significantly affect their host corals (e.g., Patton 1994). In the Chagos archipelago, however, infestations of Cymo melanodactylus were found on recently dead and dying colonies of Acropora cytherea

    Using assignment data to analyse a blended information literacy intervention: a quantitative approach

    Get PDF
    This research sought to determine whether a blended information literacy learning and teaching intervention could statistically significantly enhance undergraduates’ information discernment compared to standard face-to-face delivery. A mixture of face-to-face and online activities, including online social media learning, was used. Three interventions were designed to develop the information literacies of first-year undergraduates studying Sport and Exercise at Staffordshire University and focused on one aspect of information literacy: the ability to evaluate source material effectively. An analysis was devised where written evaluations of found information for an assessment were converted into numerical scores and then measured statistically. This helped to evaluate the efficacy of the interventions and provided data for further analysis. An insight into how the information literacy pedagogical intervention and the cognitive processes involved in enabling participants to interact critically with information is provided. The intervention which incorporated social media learning proved to be the most successful learning and teaching approach. The data indicated that undergraduate students’ information literacy can be developed. However, additional long-term data is required to establish whether this intervention would have a lasting impact

    Early respiratory viral infections in infants with cystic fibrosis

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood. Methods Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life. Results Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances. Conclusions Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF

    Fragmentation and dewatering transform Great Plains stream fish communities

    Get PDF
    Citation: Perkin, J. S., Gido, K. B., Cooper, A. R., Turner, T. F., Osborne, M. J., Johnson, E. R., & Mayes, K. B. (2015). Fragmentation and dewatering transform Great Plains stream fish communities. Ecological Monographs, 85(1), 73-92. doi:10.1890/14-0121.1Biodiversity in stream networks is threatened globally by interactions between habitat fragmentation and altered hydrologic regimes. In the Great Plains of North America, stream networks are fragmented by >19000 anthropogenic barriers, and flow regimes are altered by surface water retention and groundwater extraction. We documented the distribution of anthropogenic barriers and dry stream segments in five basins covering the central Great Plains to assess effects of broad-scale environmental change on stream fish community structure and distribution of reproductive guilds. We used an information-theoretic approach to rank competing models in which fragmentation, discharge magnitude, and percentage of time streams had zero flow (a measure of desiccation) were included to predict effects of environmental alterations on the distribution of fishes belonging to different reproductive guilds. Fragmentation caused by anthropogenic barriers was most common in the eastern Great Plains, but stream desiccation became more common to the west, where rivers are underlain by the depleted (i.e., extraction > recharge) High Plains Aquifer. Longitudinal gradients in fragmentation and desiccation contributed to spatial shifts in community structure from taxonomically and functionally diverse communities dominated by pelagic reproductive guilds where fragmentation and desiccation were least, to homogenized communities dominated by benthic guilds where fragmentation and desiccation were common. Modeling results revealed these shifts were primarily associated with decline of pelagic reproductive guilds, notably small-bodied pelagophilic and lithopelagophilic fishes that declined in association with decreased fragment length and increased number of days with zero flow. Graph theory combined with a barrier prioritization approach revealed specific fragments that could be reconnected to allow fishes within these guilds to colonize currently unoccupied fragments with the mitigation or removal of small dams (<10 m height). These findings are useful for natural resource managers charged with halting or reversing the prevailing pattern of declining fish diversity in the Great Plains. Our study represents one of the most comprehensive assessments of fish diversity responses to broad-scale environmental change in the Great Plains and provides a conservation strategy for addressing the simultaneous contributions of fragmentation and flow alteration to the global freshwater biodiversity crisis
    corecore