1,813 research outputs found

    Rotation symmetry axes and the quality index in a 3D octahedral parallel robot manipulator system

    Get PDF
    The geometry of a 3D octahedral parallel robot manipulator system is specified in terms of two rigid octahedral structures (the fixed and moving platforms) and six actuation legs. The symmetry of the system is exploited to determine the behaviour of (a new version of) the quality index for various motions. The main results are presented graphically

    Identification of Interdependent Variables that Influence Coreceptor Switch in R5 SHIVSF162P3N_{SF162P3N}-Infected Macaques

    Get PDF
    Background: We previously reported that adoption of an “open” envelope glycoprotein (Env) to expose the CD4 binding site for efficient receptor binding and infection of cell targets such as macrophages that express low levels of the receptor represents an early event in the process of coreceptor switch in two rapidly progressing (RP) R5 SHIVSF162P3N_{SF162P3N}-infected rhesus macaques, releasing or reducing Env structural constraints that have been suggested to limit the pathways available for a change in coreceptor preference. Here we extended these studies to two additional RP monkeys with coreceptor switch and three without to confirm and identify additional factors that facilitated the process of phenotypic conversion. Results: We found that regardless of coreceptor switching, R5 viruses in SHIVSF162P3N_{SF162P3N}-infected RP macaques evolved over time to infect macrophages more efficiently; this was accompanied by increased sCD4 sensitivity, with structural changes in the CD4 binding site, the V3 loop and/or the fusion domain of their Envs that are suggestive of better CD4 contact, CCR5 usage and/or virus fusion. However, sCD4-sensitive variants with improved CD4 binding were observed only in RPs with coreceptor switch. Furthermore, cumulative viral load was higher in RPs with than in those without phenotypic switch, with the latter maintaining a longer period of seroconversion. Conclusions: Our data suggest that the increased virus replication in the RPs with R5-to-X4 conversion increased the rate of virus evolution and reduction in the availability of target cells with optimal CD4 expression heightened the competition for binding to the receptor. In the absence of immunological restrictions, variants that adopt an “open” Env to expose the CD4 binding site for better CD4 use are selected, allowing structural changes that confer CXCR4-use to be manifested. Viral load, change in target cell population during the course of infection and host immune response therefore are interdependent variables that influence R5 virus evolution and coreceptor switch in SHIVSF162P3N_{SF162P3N}-infected rhesus macaques. Because an "open" Env conformation also renders the virus more susceptible to antibody neutralization, our findings help to explain the infrequent and late appearance of X4 virus in HIV-1 infection when the immune system deteriorates

    Patient-Reported Side Effects of Intradetrusor Botulinum Toxin Type A for Idiopathic Overactive Bladder Syndrome

    Get PDF
    Objective: The aim of the study was a prospective assessment of patient-reported side effects in an open-label study after intradetrusor botulinum toxin injections for idiopathic overactive bladder (OAB). Patients and Methods: Botulinum toxin A injection was performed in 56 patients with idiopathic OAB. Patients were followed up for 6 months concerning side effects and patients' satisfaction. Results: Different types of side effects were assessed such as dry mouth (19.6%), arm weakness (8.9%), eyelid weakness (8.9%), leg weakness (7.1%), torso weakness (5.4%), impaired vision (5.4%) and dysphagia (5.4%). In all cases, symptoms were mild and transient. Urological complications such as gross hematuria (17.9%), acute urinary retention (8.9%) and acute urinary tract infection (7.1%) were noticed. In all cases, acute urinary retention was transient and treated with temporary intermittent self-catheterization. There was no statistically significant correlation between dosage and observed side effects. Patients' satisfaction rate was high (71.4%). Conclusion: Intradetrusor injection of botulinum toxin was associated with a high rate of neurourological side effects. In general, side effects were transient, mild and did not require special treatment. Copyright (C) 2010 S. Karger AG, Base

    Resistive Switching and Current Conduction Mechanisms in Hexagonal Boron Nitride Threshold Memristors with Nickel Electrodes

    Full text link
    The two-dimensional (2D) insulating material hexagonal boron nitride (h BN) has attracted much attention as the active medium in memristive devices due to its favorable physical properties, among others, a wide bandgap that enables a large switching window. Metal filament formation is frequently suggested for h-BN devices as the resistive switching (RS) mechanism, usually supported by highly specialized methods like conductive atomic force microscopy (C-AFM) or transmission electron microscopy (TEM). Here, we investigate the switching of multilayer hexagonal boron nitride (h-BN) threshold memristors with two nickel (Ni) electrodes through their current conduction mechanisms. Both the high and the low resistance states are analyzed through temperature-dependent current-voltage measurements. We propose the formation and retraction of nickel filaments along boron defects in the h-BN film as the resistive switching mechanism. We corroborate our electrical data with TEM analyses to establish temperature-dependent current-voltage measurements as a valuable tool for the analysis of resistive switching phenomena in memristors made of 2D materials. Our memristors exhibit a wide and tunable current operation range and low stand-by currents, in line with the state of the art in h-BN-based threshold switches, a low cycle-to-cycle variability of 5%, and a large On/Off ratio of 107{^7}.Comment: 39 page

    Seeking a science of instruction

    Full text link

    Non-Volatile Resistive Switching of Polymer Residues in 2D Material Memristors

    Full text link
    Two-dimensional (2D) materials are popular candidates for emerging nanoscale devices, including memristors. Resistive switching (RS) in such 2D material memristors has been attributed to the formation and dissolution of conductive filaments created by the diffusion of metal ions between the electrodes. However, the area-scalable fabrication of patterned devices involves polymers that are difficult to remove from the 2D material interfaces without damage. Remaining polymer residues are often overlooked when interpreting the RS characteristics of 2D material memristors. Here, we demonstrate that the parasitic residues themselves can be the origin of RS. We emphasize the necessity to fabricate appropriate reference structures and employ atomic-scale material characterization techniques to properly evaluate the potential of 2D materials as the switching layer in vertical memristors. Our polymer-residue-based memristors exhibit RS typical for a filamentary mechanism with metal ion migration, and their performance parameters are strikingly similar to commonly reported 2D material memristors. This reveals that the exclusive consideration of electrical data without a thorough verification of material interfaces can easily lead to misinterpretations about the potential of 2D materials for memristor applications.Comment: 30 page

    The magic nature of 132Sn explored through the single-particle states of 133Sn

    Full text link
    Atomic nuclei have a shell structure where nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell closure present at the short-lived nucleus 132Sn. We use an inverse kinematics technique that involves the transfer of a single nucleon to the nucleus. The purity of the measured single-particle states clearly illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table

    Spectrophotometric determination of the formation constants of calcium(II) complexes with 2,2'-bipyridyl and 1,10-phenanthroline in acetonitrile

    Get PDF
    AbstractThe oxygen-evolving complex (OEC), which consists of a calcium-manganese cluster, is the reaction center of the Photosystem II. At this catalytic site, the water-splitting reaction in dioxygen and hydronium ions occurs. In order to partially reproduce the water splitting process, several studies have reported the synthesis of functional model complexes. Nevertheless, there is a small amount of reports, concerning the spectral behavior of calcium complexes or the calcium role in the cluster. In this work, in order to explore the absorption spectrum of calcium species in acetonitrile, an equilibrium study of the calcium complexes with 2,2'-bipyridyl or 1,10-phenanthroline, was carried out. The formation constants and the calculated electronic spectrum of each complex was obtained by a modified method of continuous variations consisting in a correlation of the experimental spectrophotometric data with the HypSpec software. The values of the formation constants for the calcium(II) complexes with 2,2'-bipyridyl and 1,10-phenanthroline, are Log β110 = 4.39 ± 0.02 and Log β110 = 5.94 ± 0.05, respectively

    The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation

    Get PDF
    Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al
    corecore