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Abstract The geometry of a 3D octahedral parallel robot manipulator system is
specified in terms of two rigid octahedral structures (the fixed and
moving platforms) and six actuation legs. The symmetry of the system is
exploited to determine the behaviour of (a new version of) the quality
index for various motions. The main results are presented graphically.
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1. Introduction 
In recent years there has been much interest in the geometry of the
Stewart platform (Stewart, 1965) and this work has led to the
development of various parallel manipulation systems. Several
kinematic perfomance indices have been introduced (Yoshikawa,
1985, Angeles and Lopez-Cajun, 1992, Lee, Duffy and Hunt, 1998,
Lee, Duffy and Keler, 1999). In particular the so-called quality index
(Lee, Duffy and Hunt, 1998,  Lee, Duffy and Keler, 1999) has been
used widely. The values of the index are usually plotted for a range of
movements of the platform within the workspace. Investigators have
usually defined the quality index as the ratio of the absolute value of
the Jacobian determinant to the maximal absolute value of the
Jacobian determinant. Hence because of the use of absolute values,
the usual quality index lies in the range (0,1). Moreover, symmetry
arguments have often been used to restrict examination of the
behaviour of the quality index to configurations for which the
manipulator is close to its central 'home' position.

In this paper, we investigate a system generalized from the Stewart
platform in two ways. Firstly, we generalize the geometry of the
manipulator to produce a system consisting of a 3D-solid moving
platform and a 3D-solid fixed platform (so that neither the six joints
on the moving platform nor those on the fixed platform lie in single



planes). Secondly, we introduce a new form of the quality index,
which does not involve absolute values. We calculate and plot the
actual values (positive, zero and negative) of this new quality index
for a two-parameter family of movements (either a one-parameter
family of rotations about a one-parameter family of rotation axes, or
a two-parameter family of screw motions about a single fixed screw
axis). The plot yields a surface since two parameters are varied. The
paper presents an exploration of the type of behaviour possible in
highly symmetrical parallel systems more general than the Stewart
platform. Further work is planned to extend the approach to systems
with progressively less symmetry. Systems whose geometry differs
only slightly from the highly symmetrical case presented here
become asymmetrical, yet they retain very similar general
characteristics in the behaviour of the quality index.

2. Geometry and Symmetry of 3D Octahedral 6-6
Platforms 

The geometry of the Stewart parallel manipulator (Stewart, 1965) is
octahedral in the sense that, in a typical position, the moving
triangular platform and the fixed triangular base form opposite faces
of an octahedron, and the six legs form the edges of the other six
triangular faces (Fig. 1) (Lee, Duffy and Hunt, 1998). Often the
dimensions are such that the moving and fixed platforms are
congruent equilateral triangles and in the 'home' position each of the
six legs has the same length, equal to the length of the platform edge.
In this position the system forms a regular octahedron, but in most
other positions the polyhedral regularity is lost and the system has
the geometry of a scalene octahedron. However, since the triangular
platforms are rigid they remain regular polygons throughout any
motion. Both the moving platform and the fixed platform have an
axis of 3-fold rotation symmetry, together with three planes of
reflection symmetry perpendicular to the platform surface.

It is possible to generalize the Stewart platform geometry by re-
locating the spherical joints in a 2D polygonal arrangement other
than an equilateral triangle (see for example Duffy, Rooney, Knight
and Crane, 2000, Merlet, 1993, Mayer St-Onge and Gosselin, 2000,
Zanganeh and Angeles, 1997). In general this will form a (non-
regular) hexagon (Fig.1). The resulting system still consists of an
hexagonal platform moving with respect to a fixed hexagonal
platform. Similar generalizations lead to quadrilateral, pentagonal
and in general planar polygonal platforms [Rooney, Duffy and Lee,
1999].



However, a 3D arrangement of the spherical joints is possible. A
particular example of this further generalization is shown in Fig.1
where the joints on the moving 'platform' are located at the vertices
of a regular solid octahedron. The joints on the fixed platform may be
similarly arranged at the vertices of a different regular solid
octahedron and the resulting system then has a more general
geometry than previous types of parallel robot manipulator derived
from the Stewart platform.
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Figure 1. Three types of 6-6 parallel manipulator, progressively more general.

The moving 'platform' now itself has the shape, and hence the
symmetry, of a regular octahedron (Fig.2). 

a. The 3D octahedral platform b. Axes of rotation symmetry

Figure 2. The 3D octahedral platform and some axes of rotation symmetry

The latter has three 4-fold axes of rotation symmetry (each passing
through a pair of opposite vertices), four 3-fold axes of rotation
symmetry (each passing through the centers of a pair of opposite



faces), and six 2-fold axes of rotation symmetry (each passing
through the centers of a pair of opposite edges). There are also
several types of planes of reflection symmetry, one of which passes
through two opposite vertices and bisects the solid octahedron. This
generalized parallel manipulator system is referred to as a 3D
octahedral platform.

3. The 3D Octahedral Platform and its Quality
Index 

The octahedral manipulator shown in Fig. 2 is fully parallel and it
has a linear actuator on each of its six legs. The six spherical joints
of the moving platform are situated at the vertices of a regular
octahedron and similarly the six spherical joints of the base are
situated at the vertices of another regular octahedron. These two
octahedra are each dual to a cube. It is well known that the cube and
the octahedron are dual to each other. The first octahedron is formed
by joining the centers of adjacent faces of the cube. The size of the
second one is chosen in a way that the edge of the octahedron is
perpendicular to its parent (the edge of the cube) and cuts through
the parent at its midpoint (Fig. 3).

 
Figure 3. 3D representation and a plan view of the two octahedra and the

dual cube.

Let σ denote the edge length of the outer octahedron, then the
coordinates of the edges of the octahedrons are [Lee, Duffy and
Rooney, 2000]:
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The origin of the fixed coordinate frame is placed at the center of
the outer octahedron and the origin of the coordinate frame attached
to the moving platform is at the center of the inner octahedron. 

The Plücker line coordinates of the six legs can be expressed by
Grassmann determinants. Hence, the direction ratios of the line are
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and the moments of the line segments about the coordinate axes are
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where ( )1 1 1, ,x y z  and ( )2 2 2, ,x y z are coordinates of two point of the line.
Let the position and orientation of the moving octahedron with

respect to the fixed octahedron be given by the transformation matrix
A, where
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Then using eqs.(3) and (4), the Plücker line coordinates of the six
legs (Fig.2) can be written as:

 1
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Here, the six leg are as follows (Fig. ): 1$ = aA , 2$ = dD , 3$ = bB ,
4$ = eE , 5$ = cC  and 6$ = fF .
In this paper the quality index (Lee, Duffy and Hunt, 1998, Lee,

Duffy and Keler, 1999) is defined in a new form, without using
absolute values, as:

max

det
det

λ= J
J

,                                           (7)

where J  is the 6x6 Jacobian matrix of the normalized coordinates of
the six legs. 

The normalized Jacobian matrix of the six lines, which are
changed to unit length, can then be written as
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where 2 2 2
i i i il L M N= + + , 1..6i= .

The quality index given by eq.(7) takes into account the sign of the
determinant of the Jacobian matrix J , and that is why it is bounded
between –1 and 1, which (depending on the particular configuration)
may differ in sign from the quality index defined by Lee, Duffy and
Hunt, 1998, and Lee, Duffy and Keler, 1999. A zero value of the
quality index indicates singularities and the value 1 (or –1) for the
quality index determines the best configuration of the robot. For a
particular system the positive orientation on each leg is fixed by
convention and hence the value of λ is relative to this convention.

3.1. Extrema of the Jacobian Determinant
In this paper, the quality index is computed with the edge length σ
of the outer octahedron equal to 1. Expressing the elements of the
matrix A given by eq.(5) in terms of screw parameters ( , , , )dα β φ , the
determinant of the Jacobian (non-normalized) for screw motions
about axes, which pass through the origin of the coordinate system,
can be expressed as:

( )( )* 2 22det sin( )cos( )cos( )sin( ) cos( ) 1 5 9cos( ) 4cos( )
64

α α β φ β φ φ=− − − +J  ,    (9)

where *J  indicates the non-normalized Jacobian; φ is the rotation
angle,  and α and β are the spherical polar coordinates (longitude
and co-latitude) determining the positive direction of the screw axis.



The determinant *det J  is equal to zero when: i) ( 0,1,2...)n nφ π= = ;
ii) / 2 ( 0,1,2...)n nα π= = ;  iii) / 2 ( 0,1,2...)n nβ π= = . This implies that the
robot is in singular configurations when the screw motion is about
the axes of 2-fold and 4-fold rotation symmetry, regardless of the
angle of rotation about these axes.

Now, we obtain the maximum value of det J  the determinant of the
normalized Jacobian matrix. We consider rotations about axes that
pass through the origin of the coordinate system. In this case, det J
(not detailed here for lack of space) is a function of three variables,

det ( , , ).f α β φ=J                                              (10)
Taking the partial derivatives /f α∂ ∂ , /f β∂ ∂  and /f φ∂ ∂ , and

equating to zero yield three equations. We use the tan(half-angle)
substitution for sin( ),cos( ),sin( ),cos( ),sin( ),and cos( )φ φ α α β β  in the latter
equations. Some of the factors of the  above equations lead to the
following solutions of the angle α : / 4; / 4;3 / 4; 3 / 4π π π π− − (only the
solutions wich do not yield singular configurations are listed). These
angles imply that there is a local maximum of the determinant of the
normalized Jacobian matrix for rotations about axes in a plane of
reflection symmetry (the axes of rotation of the moving octahedron
pass through the origin and lie in a plane of reflection symmetry that
passes through two vertices and cuts an edge at its midpoint)
(Fig.4a).

Now we consider rotations about axes in a plane of reflection
symmetry ( / 4α π= ). In this case, det J  is a function of two variables,

det ( , ).f β φ=J                                              (11)
Again, taking the partial derivatives /f β∂ ∂  and /f φ∂ ∂ , equating

to zero and making the tan(half-angle) substitution 1t  for sin( ),cos( )φ φ
and 2t  for sin( ),cos( )β β  yield two equations. Factorising these two
equations and solving them together yield the following solutions
(only real solutions are listed here): 2 1( 0, 1.16481293)t t= =± ,

2 1( 1.93185165, 0.74267285)t t=± =± , 2 1( 0.51763809, 0.74267285)t t=± =± . Note
that two of the factors lead to a polynomial in the single variable ( 2t )
of order 64. Hence, the resulting angles, that do not yield singular
configurations, are: 1,2 0.95531661β =± , 3,4 2.18627603β =± ;

1,2 1.27759043φ =± . The four solutions for β  determine exactly the axes
of 3-fold rotation symmetry of the octahedron. This means that the
maximum of det J  occurs for a rotation at 1,2 1.27759043φ =± about the
axis of 3-fold rotation symmetry. 

A similar analysis can be carried out for a combined translation
and rotation about and along the axis of 3-fold rotation symmetry,
which yields the following real solutions for d  (the translation



distance) and angle φ : 0d = ; 1,2 1.27759043φ =± . In this case, two of
the factors lead to univariate ( 1t ) polynomial of order 20. The
obtained result implies that the value of the quality index is smaller
when translating from the central position. 

Hence, using the values of the variables obtained above, the
maximum absolute value of det J  is obtained as: 

max
det 0.23455336=J .

3.2 Rotation Axes in a Plane of Reflection
Symmetry

In this case, the axes of rotation of the moving octahedron pass
through the origin and lie in a plane of reflection symmetry that
passes through two vertices and cuts an edge at its midpoint
(Fig.4a). 

a. Axes of rotation b. The quality index

Figure 4. The axes of rotation and the quality index 



Fig.4a shows the axes of rotation for which the quality index is
obtained and Fig.4b shows the quality index plotted as a function of
φ  and β . Here, φ  denotes the angle of rotation about the axis and
β is the angle between the axis of rotation and the Z-axis. The
convention for measuring a positive sense of rotation is the usual
one in which a positive angle advances a right hand screw along the
positive direction of the screw axis. For this reason the rotation axes
and screw axes are considered to be directed lines. The same
notations and conventions will be used further in the paper. In Fig.4
the angle of rotation φ  varies from π− to π+ , and the angle β  is
within the range ( )0, / 2π . The range of φ is shown in units of /15π ,
and the range of β  is shown in units of /10π . The analysis was
carried out for a variation of angle β  throughout the full range
( )0,2π  but only the results for the range ( )0, / 2π  are shown in Fig.4.
It is clear from Fig.4, that the quality index is zero for rotation of the
moving octahedron about the axes of 2-fold and 4-fold rotation
symmetry. This means that the robot is in singular configurations
regardless of the angle of rotation about these axes. On the other
hand, we determined  that the robot reaches its best configuration
(the quality index is 1 or –1) for a rotation about the axis of 3-fold
rotation symmetry.

3.3 Axis of 3-Fold Rotation Symmetry 
In this case, the quality index is obtained for translation and rotation
along and about the axis of 3-fold rotation symmetry. The obtained
quality index and the axis of 3-fold rotation symmetry for the
octahedron are shown in Fig. 5.

a. The axis of 3-fold rotation
symmetry

b. Some positions of the moving
octahedron during the movement



c. The quality index

Figure 5. The axis of rotation, positions of the moving octahedron and the
quality index

Here, the angle of rotation φ  varies from π− to π+ , and the
translation d  varies from –0.5σ  to +0.5σ (in Fig. 5 the range of φ  is
shown in units of /10π , and the range of d is shown in units of
0.05σ ). Obviously, the quality index is zero when the angle of
rotation φ  is π− , 0, or π+ , regardless of the translation. On the
other hand, the quality index reaches its maximum (1 or –1) when
the moving octahedron is in the center of the fixed one ( 0d = ) and
rotates about the axis of 3-fold rotation symmetry.

4. Discussion and conclusions 
The paper has examined some aspects of the behavior of (a new
version of) the quality index for a 3D octahedral parallel manipulator
system in terms of symmetry. The quality index has been plotted for
two types of motion. The first involved the moving platform rotating
about a sequence of axes lying in a plane of reflection symmetry. The
second involved the moving platform screwing about an axis of 3-fold
symmetry. Other types of motion have been explored but the details
are not reported here.

Three main conclusions have resulted from this work. Firstly, the
value of the quality index has been shown to be zero for all rotations
about either an axis of 2-fold or an axis of 4-fold symmetry. (It is zero
at the 'home' position of course, and it remains zero for any
translation away from this position.) Secondly, the maximum value
of the quality index occurs at each axis of 3-fold rotation symmetry
for a particular angle of rotation. Finally, allowing the quality index
to attain negative values leads to two separate types of configuration



- one for positive values and the other for negative values. Each of
these two configurations has an extremum.

References
Angeles, J., Lopez-Cajun, C. S. (1992), Kinematic isotropy and the

conditioning index of serial robotic manipulators, The International
Journal of Robotics Research, no. 6, vol. 11, pp.560-571.

Duffy, J., Rooney, J., Knight, B. and Crane, C. D. (2000), A review of a family
of self-deploying tensegrity structures with elastic ties, The Shock and
Vibration Digest, no. 2, vol. 32, pp. 100-106.

Lee, J., Duffy, J. and Hunt, K.H. (1998), A practical quality index on the
octahedral manipulator, The International Journal of Robotics Research,
no. 10, vol. 17, pp.1081-1090.

Lee, J. Duffy, J. and Keler, M. (1999), The optimum quality index for the
stability of in-parallel planar platform devices, Journal of Mechanical
Design, vol. 121, pp.15-20.

Lee, J., Duffy, J. and Rooney, J. (2000), An initial investigation into the
geometrical meaning of the (pseudo-) inverses of the line matrices of the
edges of platonic polyhedra, Proceedings of a Symposium Commemorating
the Legacy, Works, and Life of Sir Robert Stawel Ball Upon the 100th

Anniversary of A Treatise on the Theory of Screws, Trinity College,
University of Cambridge, UK., July 9-12.

Mayer St-Onge, B. and  Gosselin, C. M. (2000), Singularity analysis and
representation of the general Gough-Steward platform, The International
Journal of Robotics Research, no. 3, vol. 19, pp.271-288.

Merlet, J-P. (1993), Direct kinematics of parallel manipulators, IEEE
Transaction on Robotics and Automation, no. 6, vol. 9, pp.842-846.

Rooney, J., Duffy, J. and Lee, J. (1999), Tensegrity and compegrity
configurations in anti-prism manipulator platforms, Proceedings of the
Tenth World Congress on the Theory of Machines and Mechanisms, Oulu,
Finland, pp. 1278-1287.

Stewart, D. (1965), A platform with six degrees of freedom, Proceedings of
Institution of Mechanical Engineers, London, UK, no. 15, vol. 180, pp.371-
386.

Yoshikawa, T. (1985), Manipulability of robotic mechanism, The International
Journal of Robotics Research, no. 2, vol. 4, pp.3-9.

Zanganeh, K.E. and Angeles, J. (1997), Kinematic isotropy and optimum
design of parallel manipulators, The International Journal of Robotics
Research, no. 2, vol. 16, pp.185-197.


