1,047 research outputs found

    Multispecies virial expansions

    Get PDF
    We study the virial expansion of mixtures of countably many different types of particles. The main tool is the Lagrange–Good inversion formula, which has other applications such as counting coloured trees or studying probability generating functions in multi-type branching processes. We prove that the virial expansion converges absolutely in a domain of small densities. In addition, we establish that the virial coefficients can be expressed in terms of two-connected graphs

    Signaling transduction analysis in gingival epithelial cells after infection with Aggregatibacter actinomycetemcomitans

    Get PDF
    Periodontal diseases result from the interaction of bacterial pathogens with the hosts gingival tissue. Gingival epithelial cells are constantly challenged by microbial cells and respond by altering their transcription profiles, inducing the production of inflammatory mediators. Different transcription profiles are induced by oral bacteria and little is known about how the gingival epithelium responds after interaction with the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. In the present study, we examined the transcription of genes involved in signaling transduction pathways in gingival epithelial cells exposed to viable A.actinomycetemcomitans. Immortalized gingival epithelial cells (OBA-9) were infected with A.actinomycetemcomitans JP2 for 24 h and the transcription profile of genes encoding human signal transduction pathways was determined. Functional analysis of inflammatory mediators positively transcribed was performed by ELISA in culture supernatant and in gingival tissues. Fifteen of 84 genes on the array were over-expressed (P < 0.01) after 24 h of infection with viable A.actinomycetemcomitans. Over-expressed genes included those implicated in tissue remodeling and bone resorption, such as CSF2, genes encoding components of the LDL pathway, nuclear factor-?B-dependent genes and other cytokines. The ELISA data confirmed that granulocytemacrophage colony-stimulating factor/colony-stimulating factor 2, tumor necrosis factor-a and intercellular adhesion molecule-1 were highly expressed by infected gingival cells when compared with control non-infected cells, and presented higher concentrations in tissues from patients with aggressive and chronic periodontitis than in tissues from healthy controls. The induction in epithelial cells of factors such as the pro-inflammatory cytokine CSF2, which is involved in osteoclastogenesis, may help to explain the outcomes of A.actinomycetemcomitans infection.FAPESP [03/08598-0, 05/58903-0]Public Health Service from NIDCR [RO1DE14605

    Wheat genotypic variation in dynamic fluxes of WSC components in different stem segments under drought during grain filling

    Get PDF
    In wheat, stem water soluble carbohydrates (WSC), composed mainly of fructans, are the major carbon sources for grain filling during periods of decreasing photosynthesis or under drought stress after anthesis. Here, in a field drought experiment, WSC levels and associated enzyme activities were followed in different stem segments (peduncle, penultimate internode, lower parts of stem, and sheath) during grain filling. The focus was on two double haploid (DH) lines, DH 307 and DH 338, derived from a Westonia/Kauz cross, two drought-tolerant wheat varieties that follow different drought adaptation strategies during grain filling. The results showed that in irrigated plants, in the period between 20 and 30 days after anthesis (DAA), 70–80% of WSC were fructans. Before and after this period, the fructan proportion varied from 10 to 60%, depending on the location along the stem. Under drought, the fructan proportion changed, depending on genotype, and developmental stages. After anthesis, stem fructans accumulation occurred mainly in the peduncle and penultimate internode until 14 DAA in both DH lines, with clear genotypic variation in subsequent fructan degradation under drought. In DH 307 a significant reduction of fructans with a concomitant increase in fructose levels occurred earlier in the lower parts of the stem and the sheath, as compared to DH 338 or other stem segments in both lines. This was associated with an earlier increase of grain weight and thousand grain weight in DH 307. Spatiotemporal analysis of fructan dynamics and enzymatic activities in fructan metabolism revealed that several types of FEHs are involved in fructan remobilization to the grain under drought

    The biology of appetite control: Do resting metabolic rate and fat-free mass drive energy intake?

    Get PDF
    The prevailing model of homeostatic appetite control envisages two major inputs; signals from adipose tissue and from peptide hormones in the gastrointestinal tract. This model is based on the presumed major influence of adipose tissue on food intake. However, recent studies have indicated that in obese people fat-free mass (FFM) is strongly positively associated with daily energy intake and with meal size. This effect has been replicated in several independent groups varying in cultural and ethnic backgrounds, and appears to be a robust phenomenon. In contrast fat mass (FM) is weakly, or mildly negatively associated with food intake in obese people. In addition resting metabolic rate (RMR), a major component of total daily energy expenditure, is also associated with food intake. This effect has been replicated in different groups and is robust. This action is consistent with the proposal that energy requirements — reflected in RMR (and other aspects of energy expenditure) constitute a biological drive to eat. Consistent with its storage function, FM has a strong inhibitory effect on food intake in lean subjects, but this effect appears to weaken dramatically as adipose tissue increases. This formulation can account for several features of the development and maintenance of obesity and provides an alternative, and transparent, approach to the biology of appetite control

    Fluctuation-dissipation relations in the non-equilibrium critical dynamics of Ising models

    Full text link
    We investigate the relation between two-time, multi-spin, correlation and response functions in the non-equilibrium critical dynamics of Ising models in d=1 and d=2 spatial dimensions. In these non-equilibrium situations, the fluctuation-dissipation theorem (FDT) is not satisfied. We find FDT `violations' qualitatively similar to those reported in various glassy materials, but quantitatively dependent on the chosen observable, in contrast to the results obtained in infinite-range glass models. Nevertheless, all FDT violations can be understood by considering separately the contributions from large wavevectors, which are at quasi-equilibrium and obey FDT, and from small wavevectors where a generalized FDT holds with a non-trivial limit fluctuation-dissipation ratio X. In d=1, we get X = 1/2 for spin observables, which measure the orientation of domains, while X = 0 for observables that are sensitive to the domain-wall motion. Numerical simulations in d=2 reveal a unique X = 0.34 for all observables. Measurement protocols for X are discussed in detail. Our results suggest that the definition of an effective temperature Teff = T / X for large length scales is generically possible in non-equilibrium critical dynamics.Comment: 26 pages, 10 figure

    Mayer and virial series at low temperature

    Get PDF
    We analyze the Mayer pressure-activity and virial pressure-density series for a classical system of particles in continuous configuration space at low temperature. Particles interact via a finite range potential with an attractive tail. We propose physical interpretations of the Mayer and virial series' radius of convergence, valid independently of the question of phase transition: the Mayer radius corresponds to a fast increase from very small to finite density, and the virial radius corresponds to a cross-over from monatomic to polyatomic gas. Our results have consequences for the search of a low density, low temperature solid-gas phase transition, consistent with the Lee-Yang theorem for lattice gases and with the continuum Widom-Rowlinson model.Comment: 36 pages, 1 figur

    Against all odds? Forming the planet of the HD196885 binary

    Full text link
    HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose orbit places it at the limit for orbital stability. The presence of a planet in such a highly perturbed region poses a clear challenge to planet-formation scenarios. We investigate this issue by focusing on the planet-formation stage that is arguably the most sensitive to binary perturbations: the mutual accretion of kilometre-sized planetesimals. To this effect we numerically estimate the impact velocities dvdv amongst a population of circumprimary planetesimals. We find that most of the circumprimary disc is strongly hostile to planetesimal accretion, especially the region around 2.6AU (the planet's location) where binary perturbations induce planetesimal-shattering dvdv of more than 1km/s. Possible solutions to the paradox of having a planet in such accretion-hostile regions are 1) that initial planetesimals were very big, at least 250km, 2) that the binary had an initial orbit at least twice the present one, and was later compacted due to early stellar encounters, 3) that planetesimals did not grow by mutual impacts but by sweeping of dust (the "snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab was formed not by core-accretion but by the concurent disc instability mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical Astronomy (Special issue on EXOPLANETS

    Massive binary black holes in galactic nuclei and their path to coalescence

    Full text link
    Massive binary black holes form at the centre of galaxies that experience a merger episode. They are expected to coalesce into a larger black hole, following the emission of gravitational waves. Coalescing massive binary black holes are among the loudest sources of gravitational waves in the Universe, and the detection of these events is at the frontier of contemporary astrophysics. Understanding the black hole binary formation path and dynamics in galaxy mergers is therefore mandatory. A key question poses: during a merger, will the black holes descend over time on closer orbits, form a Keplerian binary and coalesce shortly after? Here we review progress on the fate of black holes in both major and minor mergers of galaxies, either gas-free or gas-rich, in smooth and clumpy circum-nuclear discs after a galactic merger, and in circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag
    • 

    corecore