5 research outputs found

    Stellar flares detected with the Next Generation Transit Survey

    Full text link
    We present the results of a search for stellar flares in the first data release from the Next Generation Transit Survey (NGTS). We have found 610 flares from 339 stars, with spectral types between F8 and M6, the majority of which belong to the Galactic thin disc. We have used the 13-s cadence NGTS light curves to measure flare properties such as the flare amplitude, duration, and bolometric energy. We have measured the average flare occurrence rates of K and early to mid-M stars and present a generalized method to measure these rates while accounting for changing detection sensitivities. We find that field age K and early M stars show similar flare behaviour, while fully convective M stars exhibit increased white-light flaring activity, which we attribute to their increased spin-down time. We have also studied the average flare rates of pre-main-sequence K and M stars, showing they exhibit increased flare activity relative to their main-sequence counterparts

    NGTS and WASP photometric recovery of a single-transit candidate from TESS

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) produces a large number of single-transit event candidates, since the mission monitors most stars for only ∌27d. Such candidates correspond to long-period planets or eclipsing binaries. Using the TESS Sector 1 full-frame images, we identified a 7750 ppm single-transit event with a duration of 7 h around the moderately evolved F-dwarf star TIC-238855958 (Tmag = 10.23, Teff = 6280 ± 85 K). Using archival WASP photometry we constrained the true orbital period to one of three possible values. We detected a subsequent transit-event with NGTS, which revealed the orbital period to be 38.20 d. Radial velocity measurements from the CORALIE Spectrograph show the secondary object has a mass of M2 = 0.148 ± 0.003M⊙, indicating this system is an F-M eclipsing binary. The radius of the M-dwarf companion is R2 = 0.171 ± 0.003 R⊙, making this one of the most well characterized stars in this mass regime. We find that its radius is 2.3σ lower than expected from stellar evolution models

    NGTS clusters survey - III. A low-mass eclipsing binary in the Blanco 1 open cluster spanning the fully convective boundary

    Get PDF
    We present the discovery and characterization of an eclipsing binary identified by the Next Generation Transit Survey in the ∌115-Myr-old Blanco 1 open cluster. NGTS J0002-29 comprises three M dwarfs: a short-period binary and a companion in a wider orbit. This system is the first well-characterized, low-mass eclipsing binary in Blanco 1. With a low mass ratio, a tertiary companion, and binary components that straddle the fully convective boundary, it is an important benchmark system, and one of only two well-characterized, low-mass eclipsing binaries at this age. We simultaneously model light curves from NGTS, TESS, SPECULOOS, and SAAO, radial velocities from VLT/UVES and Keck/HIRES, and the system’s spectral energy distribution. We find that the binary components travel on circular orbits around their common centre of mass in Porb = 1.098 005 24 ± 0.000 000 38 d, and have masses Mpri = 0.3978 ± 0.0033 M☉ and Msec = 0.2245 ± 0.0018 M☉, radii Rpri = 0.4037 ± 0.0048 R☉ and Rsec = 0.2759 ± 0.0055 R☉, and effective temperatures Tpri = 3372+44-37 K and Tsec = 3231+38-31 K. We compare these properties to the predictions of seven stellar evolution models, which typically imply an inflated primary. The system joins a list of 19 well-characterized, low-mass, sub-Gyr, stellar-mass eclipsing binaries, which constitute some of the strongest observational tests of stellar evolution theory at low masses and young ages

    NGTS-21b: an inflated Super-Jupiter orbiting a metal-poor K dwarf

    Full text link
    We report the discovery of NGTS-21b , a massive hot Jupiter orbiting a low-mass star as part of the Next Generation Transit Survey (NGTS). The planet has a mass and radius of 2.36 ± 0.21 MJ and 1.33 ± 0.03 RJ, and an orbital period of 1.543 d. The host is a K3V (Teff = 4660 ± 41 K) metal-poor ([Fe/H] = −0.26 ± 0.07 dex) dwarf star with a mass and radius of 0.72 ± 0.04 M⊙ and 0.86 ± 0.04R⊙. Its age and rotation period of 10.02+3.29−7.30 Gyr and 17.88 ± 0.08 d, respectively, are in accordance with the observed moderately low-stellar activity level. When comparing NGTS-21b with currently known transiting hot Jupiters with similar equilibrium temperatures, it is found to have one of the largest measured radii despite its large mass. Inflation-free planetary structure models suggest the planet’s atmosphere is inflated by ∌21 per cent⁠, while inflationary models predict a radius consistent with observations, thus pointing to stellar irradiation as the probable origin of NGTS-21b’s radius inflation. Additionally, NGTS-21b’s bulk density (1.25 ± 0.15 g cm–3) is also amongst the largest within the population of metal-poor giant hosts ([Fe/H] < 0.0), helping to reveal a falling upper boundary in metallicity–planet density parameter space that is in concordance with core accretion formation models. The discovery of rare planetary systems such as NGTS-21 greatly contributes towards better constraints being placed on the formation and evolution mechanisms of massive planets orbiting low-mass stars.</p

    TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 ± 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is a super-Earth with a period of 0.49 d, a radius of 1.28 ± 0.04 R, a mass of 3.07 ± 0.35 M, and a density of 8.0 ± 1.0 g cm-3; TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 ± 0.09 R, a mass of 9.90+1.53-1.49 M, and a density of 1.36 ± 0.25 g cm-3. We find a third planet, TOI-431 c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and a period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is a prime TESS discovery for the study of rocky planet phase curves
    corecore