254 research outputs found

    690. Permanent Epigenetic Silencing of Human Genes With Artificial Transcriptional Repressors

    Get PDF
    There are several diseases whereby the goal of gene therapy is to silence rather than replace a gene function. Paradigmatic examples are diseases caused by a dominant negative mutation or those in which silencing of a host gene confers resistance to a pathogen or compensates the function of the missing gene. Yet, gene silencing can be used to enhance efficacy of cell therapy and for biotechnological applications. Until now, two technologies have been used to silence gene expression, namely RNA interference with short harping RNAs (shRNA) and gene disruption with Artificial Nucleases (ANs). Although some promising pre-clinical and clinical data have been already obtained, the low efficiency of knock-down with shRNA and of biallelic disruption with ANs may limit efficacy of these treatments, especially when residual gene activity can exert a biological function. To overcome this issue, we have developed a novel modality of gene silencing that exploits endogenous epigenetic mechanisms to convey robust and heritable states of repression at the desired target gene. We have generated Artificial Transcriptional Repressors (ATRs), chimeric proteins containing a custom-made DNA binding domain fused to the effector domain of a chromatinmodifying enzyme involved in silencing of Endogenous RetroViruses (ERVs). By performing iterative rounds of selection in human cell lines and primary cells engineered to report for synergistic activity of candidate effector domains, we identified a combination of 3 domains that, when transiently co-assembled on the promoter of the reporter cassette, fully abrogated transgene expression in up to 90% of treated cells. Importantly, silencing was maintained for more than 250 days in cultured cell lines, was resistant to in vitro differentiation or metabolic activation of primary cells, and was confined to the reporter cassette. Silencing was associated with high levels of de novo DNA methylation at the targeted locus and was dependent on this epigenetic mark for its propagation. Finally, transient transfection of 3 ATRs targeted to the promoter region of the Beta-2-microglobulin (B2M) gene resulted in the loss of surface expression of B2M and, consequently, of the MHC-I molecules in up to 80% of treated cells. This phenotype was associated with a switch in the epigenetic and transcriptional state of the constitutively active B2M gene, which became highly decorated with DNA methylation and deprived of RNA PolII and of its transcript. Of note, silencing was resistant to IFN-Îł treatment, a potent B2M inducer. Overall, these data provide the first demonstration of efficient and stable silencing of an endogenous gene upon transient delivery of ATRs. This result was made possible by repurposing the machinery involved in silencing of ERVs, which instructs self-sustaining repressive epigenetic states on the gene of interest. While silencing of B2M might be used to generate universally transplantable allogeneic cells, our hit-and-run strategy provides a powerful new alternative to conventional gene silencing for the treatment of several diseases. (LN & AL co-authorship

    729 inheritable silencing of endogenous gene by hit and run targeted epigenetic editing

    Get PDF
    Gene silencing holds great promise for the treatment of several diseases and can be exploited to investigate gene function and activity of the regulatory genome. Here, we develop a novel modality of gene silencing that exploits epigenetics to achieve stable and highly efficient repression of target genes. To this end, we generated Artificial Transcriptional Repressors (ATRs), chimeric proteins containing a custom-made DNA binding domain fused to the effector domain of chromatin-modifying enzymes involved in silencing process of Endogenous RetroViruses (ERVs). By performing iterative rounds of selection in cells engineered to report for synergistic activity of candidate effector domains, we identified a combination of 3 domains (namely KRAB, DNMT3A and DNMT3L) that, when transiently co-assembled on the promoter of the reporter cassette, recreate a powerful embryonic-specific repressive complex capable of inducing full and long-term (>150 days) silencing of transgene expression in up to 90% of the cells. The ATR-induced silencing was cell type and locus independent, and resistant to metabolic activation of the cells. Importantly, these findings were holding true also for endogenous genes embedded in their natural chromatin context, as shown for the highly and ubiquitously expressed B2M gene. Here, transient co-delivery of TALE-based ATRs resulted in loss of surface expression of B2M and, consequently, of the MHC-I molecules in up to 80% of the cells. This phenotype was associated with a drastic switch in the epigenetic and transcriptional state of the constitutively active B2M promoter, which become highly decorated with de novo DNA methylation and deprived of RNAP II. Importantly, silencing was sharply confined to the targeted gene and resistant to INF-Îł, a potent natural activator of B2M. We further extended these studies by showing that our silencing approach is portable to the CRISPR/dCas9 DNA binding technology. In this setting, comparable levels of B2M silencing (up to 80%) were achieved using either pools or even individual sgRNAs coupled to dCas9-based ATRs. Yet, adoption of this technology allowed performing simultaneous, highly efficient multiplex gene silencing within the same cell, as shown for B2M, IFNAR1 and VEGFA. Finally, we assessed resistance of the silenced gene to activity of potent artificial transcription activators and chromatin remodelers, and found that only targeted DNA demethylation was able to reawaken the silent gene. This allowed performing iterative cycles of silencing and reactivation of the same gene in the same cell population. Overall, these data provide the first demonstration of efficient and stable epigenetic silencing of endogenous genes upon transient delivery of ATRs. This was accomplished by repurposing the ERVs silencing machinery, which instructs self-sustaining repressive epigenetic states to the target gene. While silencing of B2M might be used to generate universally transplantable allogeneic cells, our hit-and-run strategy provides a powerful new alternative to conventional gene silencing for both basic and translational research

    Hybrid transcatheter left ventricular reconstruction for the treatment of ischemic cardiomyopathy

    Get PDF
    Left ventricular (LV) enlargement is a mechanical adaptation to accommodate LV systolic inefficiency following an acute damage or a progressive functional deterioration, which fails to correct the decline of stroke volume in the long term, leading to progressive heart failure (HF). Surgical ventricular reconstruction (SVR) is a treatment for patients with severe ischemic HF aiming to restore LV efficiency by volume reduction and LV re-shaping. Recently, a new minimally-invasive hybrid technique for ventricular reconstruction has been developed by means of the Revivent (TM) system (BioVentrix Inc., San Ramon, CA, USA). The device for ventricular reconstruction consists of anchor pairs that enable plication of the anterior and free wall LV scar against the right ventricular (RV) septal scar of anteroseptal infarctions to decrease cardiac volume without ventriculotomy in a beating-heart minimally-invasive procedure, consisting of a transjugular and left thoracotomy approach. Patients with severe (Grade 4) functional mitral regurgitation (FMR) or with previous cardiac surgery procedures were excluded. Outcome of the reconstruction procedure: from 2012 until 2019, it has been applied to 203 patients, with 5 (2.5%) in-hospital deaths. LV volume reduction varied according to experience gained along years: LV end-systolic volume index decreased from baseline 43% (post-market registry) vs. 27% (CE-mark study); left ventricular ejection fraction (LVEF) increased from baseline 25% (post-market registry) vs. 16% (CE-mark study). Clinical status (NYHA class, HF questionnaire, 6-minute walking test) improved significantly compared to baseline, and re-hospitalization rate was only 13% at 6-month follow-up (60% of patients in NYHA =3). FMR grade decreased at follow-up in 63%, while it was unchanged in 37% of patients. The hybrid ventricular reconstruction (HVR) seems a promising treatment for HF patients who may benefit from LV volume reduction, with reasonable mortality and good results at follow-up. A baseline less severe clinical profile was not associated to better outcome at follow-up, which makes the procedure feasible in patients with very large ventricles and depressed ejection fraction (EF). LV reshaping has no detrimental effect on FMR, that may, on the contrary, benefit owing to less papillary muscle displacement, partial recovery of torsion dynamics and of myofibers re-orientation. A controlled study on top of optimal medical treatment is warranted to confirm its role in the management of HF patients

    Effect of lead design and pacing vector on electrical parameters of quadripolar coronary sinus leads: The RALLY-X4 study

    Get PDF
    Abstract Background Various lead designs have been developed to accommodate different coronary sinus anatomies. Our objectives were to compare electrical parameters of straight and spiral left ventricular leads, to evaluate capture thresholds and impedances using different pacing vectors, and to study evolution of thresholds over time. Methods The RALLY-X4 study enrolled patients implanted with a lead from the Acuity X4 family (Straight, Spiral Short or Spiral Long). Electrical parameters (including capture thresholds from all 17 vectors) were measured at baseline and follow-up. Results Data from 795 patients who were successfully implanted were analysed. Straight and spiral leads had similar proportions of patients with thresholds 80% of patients. Pacing vectors significantly affect electrical parameters, with higher thresholds in more proximal electrodes and lower thresholds with unipolar and extended bipolar configurations. Capture thresholds slightly decreased over a mean follow-up of one year. This article is protected by copyright. All rights reservedPeer reviewe

    A review of multisite pacing to achieve cardiac resynchronization therapy

    Get PDF
    Non-response to cardiac resynchronization therapy remains a significant problem in up to 30% of patients. Multisite stimulation has emerged as a way of potentially overcoming non-response. This may be achieved by the use of multiple leads placed within the coronary sinus and its tributaries (dual-vein pacing) or more recently by the use of multipolar (quadripolar) left ventricular pacing leads which can deliver pacing stimuli at multiple sites within the same vein. This review covers the role of multisite pacing including the interaction with the underlying pathophysiology, the current and planned studies, and the potential pitfalls of this technolog

    Lamin A/C Missense Mutation R216C Pinpoints Overlapping Features Between Brugada Syndrome and Laminopathies

    Get PDF
    A 31-year-old man experienced at-rest cardiac arrest. After successful resuscitation, the baseline ECG demonstrated sinus rhythm with concave ST segment elevation in right precordial leads (V1–V3) followed by a negative and symmetrical T-wave. Neither coronary artery disease nor electrolytes’ imbalances were detected. In the following days, ECG showed a spontaneous type 1 Brugada ECG pattern (Figure [A1]), more evident with right precordial leads in II and III intercostal spaces. Transthoracic echocardiography (Figure [A2]) failed to show any cardiomyopathy. Cardiac MRI showed normal chambers dimension, wall thickness, volume, and function (left ventricular end diastolic volume, 67.7 mL/m2; IVS, 1 cm; left ventricular end fraction, 59.7%). Late gadolinium enhancement sequences were negative; adipose and fibrous tissue infiltration were excluded. The patient was implanted with a transvenous single chamber cardioverter defibrillator (Medtronic). Several appropriate ICD interventions on VT and ventricular fibrillation were recorded in the following years. Family history (Figure [B]) was positive for sudden cardiac death: the maternal grandfather died at age 45 years, aII degree maternal cousin died during sleep at age 40 years. The proband’s mother showed a first degree atrioventricular block (PR interval=280 ms) and right bundle branch block (Figure [A3]). A neurological examination in the index case and his mother was negative and creatine phosphokinase levels were normal in both. Informed written consent was obtained from all family members. Study was approved by the Local Ethics Committee (152/2013/O/Oss, June 1, 2013). Molecular genetic analysis was performed by next generation sequencing using PED MASTR Plus assay comprising 52 cardiac electrical disorders related genes, SCN5A included (www.agilent.com)

    REducing INFectiOns thRough Cardiac device Envelope: insight from real world data. The REINFORCE Project

    Get PDF
    Background: Infections resulting from cardiac implantable electronic device (CIED) implantation are severely impacting on patients' and on health care systems. The use of TYRXTM absorbable antibiotic-eluting envelope has proven to decrease major CIED infections within 12 months of CIED surgery. Aims: to evaluate the impact of the envelope use on infection-related clinical events in a real-world contemporary patient population. Methods: Data on patients undergoing CIED surgery were collected prospectively by participating centers of the One Hospital ClinicalService project. Patients were divided into two groups according to whether TYRXTM absorbable antibiotic-eluting envelope was used or not. Results: Out of 1819 patients, 872 (47.9%) were implanted with an absorbable antibiotic-eluting envelope and included in the Envelope group and 947 (52.1%) patients who did not receive an envelope were included in the Control group. Compared to control, patients in the Envelope group had higher thrombo-embolic or hemorrhagic risk, higher BMI, lower LVEF and more comorbidities. During a mean follow-up of 1.4 years, the incidence of infection-related events was significantly higher in the control compared to the Envelope group (2.4% vs 0.8%, p = 0.007). The 5-year cumulative incidence of infection-related events was 8.1% in the control and 2.1% in the Envelope group (HR: 0.34, 95%CI: 0.14-0.80, p = 0.010). Conclusions: In our analysis, the use of an absorbable antibiotic-eluting envelope in the general CIED population was associated with a lower risk of systemic and pocket infection
    • …
    corecore