43 research outputs found

    The ACRA Anatomy Study (Assessment of Disability After Coronary Procedures Using Radial Access): A Comprehensive Anatomic and Functional Assessment of the Vasculature of the Hand and Relation to Outcome After Transradial Catheterization

    Get PDF
    BACKGROUND: The palmar arches serve as the most important conduits for digital blood supply, and incompleteness may lead to digital ischemia when the radial artery becomes obstructed after cardiac catheterization. The rate of palmar arch incompleteness and the clinical consequences after transradial access are currently unknown.METHODS AND RESULTS: The vascular anatomy of the hand was documented by angiography in 234 patients undergoing transradial cardiac catheterization. In all patients, a preprocedural modified Allen test and Barbeau test were performed. Upper-extremity function was assessed at baseline and 2-year follow-up by the QuickDASH. Incompleteness of the superficial palmar arch (SPA) was present in 46%, the deep palmar arch was complete in all patients. Modified Allen test and Barbeau test results were associated with incompleteness of the SPA (P=0.001 and P=0.001). The modified Allen test had a 33% sensitivity and 86% specificity for SPA incompleteness with a cutoff value of >10 seconds and a 59% sensitivity and 60% specificity with a cutoff value of >5 seconds. The Barbeau test had a 7% sensitivity and 98% specificity for type D and a 21% sensitivity and 93% specificity for types C and D combined. Upper-extremity dysfunction was not associated with SPA incompleteness (P=0.77).CONCLUSIONS: Although incompleteness of the SPA is common, digital blood supply is always preserved by a complete deep palmar arch. Preprocedural patency tests have thus no added benefit to prevent ischemic complications of the hand. Finally, incompleteness of the SPA is not associated with a loss of upper-extremity function after transradial catheterization

    The role of ADAMTS13 in acute myocardial infarction:cause or consequence?

    Get PDF
    ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13, is a metalloprotease that cleaves von Willebrand factor (VWF). There is considerable evidence that VWF levels increase and ADAMTS13 levels decrease in ST-elevation myocardial infarction (STEMI) patients. It is unclear whether this contributes to no reflow, infarct size, and intramyocardial haemorrhage (IMH). We aimed to determine the role of ADAMTS13 in STEMI patients and to investigate the benefits of recombinant ADAMTS13 (rADAMTS13) in a porcine model of myocardial ischaemia-reperfusion. In 49 consecutive percutaneous coronary intervention (PCI)-treated STEMI patients, blood samples were collected directly after through 7 days following PCI. Cardiac magnetic resonance was performed 4-6 days after PCI to determine infarct size and IMH. In 23 Yorkshire swine, the circumflex coronary artery was occluded for 75 min. rADAMTS13 or vehicle was administered intracoronary following reperfusion. Myocardial injury and infarct characteristics were assessed using cardiac enzymes, ECG, and histopathology. In patients with IMH, VWF activity and VWF antigen were significantly elevated directly after PCI and for all subsequent measurements, and ADAMTS13 activity significantly decreased at 4 and 7 days following PCI, in comparison with patients without IMH. VWF activity and ADAMTS13 activity were not related to infarct size. In rADAMTS13-treated animals, no differences in infarct size, IMH, or formation of microthrombi were witnessed compared with controls. No correlation was found between VWF/ADAMTS13 and infarct size in patients. However, patients suffering from IMH had significantly higher VWF activity and lower ADAMTS13 activity. Intracoronary administration of rADAMTS13 did not decrease infarct size or IMH in a porcine model of myocardial ischaemia-reperfusion. These data dispute the imbalance in ADAMTS13 and VWF as the cause of no reflow

    Understanding the market for justice

    Get PDF

    Doppler Versus Thermodilution-Derived Coronary Microvascular Resistance to Predict Coronary Microvascular Dysfunction in Patients with Acute Myocardial Infarction or Stable Angina Pectoris

    Get PDF
    Coronary microvascular resistance is increasingly measured as a predictor of clinical outcomes, but there is no accepted gold-standard measurement. We compared the diagnostic accuracy of two invasive indices of microvascular resistance, Doppler-derived hyperemic microvascular resistance (hMR) and thermodilution-derived index of microcirculatory resistance (IMR), at predicting microvascular dysfunction. 54 patients (61±10 years) undergoing cardiac catheterization, for stable coronary artery disease (n=10) or acute myocardial infarction (AMI, n=44), had simultaneous intracoronary pressure, Doppler flow velocity and thermodilution flow data acquired from 74 unobstructed vessels, at rest and hyperemia. Three independent measures of microvascular function were assessed, using predefined dichotomous thresholds: i) CFR, the average value of Doppler- and thermodilution-derived coronary flow reserve (CFR), and cardiovascular magnetic resonance derived: ii) Myocardial Perfusion Reserve Index (MPRI) and iii) Microvascular Obstruction (MVO). hMR correlated with IMR (rho = 0.41, p<0.0001). hMR had better diagnostic accuracy than IMR to predict CFR (area under curve, (AUC) 0.82 versus 0.58, p<0.001, sensitivity/specificity 77/77% versus 51/71%) and MPRI (AUC 0.85 versus 0.72, p=0.19, sensitivity/specificity 82/80% versus 64/75%). In AMI patients, the AUCs of hMR and IMR at predicting extensive MVO were 0.83 and 0.72 respectively (p=0.22, sensitivity/specificity 78/74% versus 44/91%). We measured two invasive indices of coronary microvascular resistance to predict multiple distinct measures of microvascular dysfunction. We found these two invasive indices only correlate modestly and so cannot be considered equivalent. In our study, the correlation between independent invasive and non-invasive measures of microvascular function was better with hMR than with IMR

    CD40 in coronary artery disease: a matter of macrophages?

    Get PDF

    CD40 in coronary artery disease: a matter of macrophages?

    No full text
    Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesi

    Microcirculatory dysfunction

    No full text
    corecore