616 research outputs found

    Images, structural properties and metal abundances of galaxy clusters observed with Chandra ACIS-I at 0.1<z<1.3

    Get PDF
    We have assembled a sample of 115 galaxy clusters at 0.1<z<1.3 with archived Chandra ACIS-I observations. We present X-ray images of the clusters and make available region files containing contours of the smoothed X-ray emission. The structural properties of the clusters were investigated and we found a significant absence of relaxed clusters (as determined by centroid shift measurements) at z>0.5. The slope of the surface brightness profiles at large radii were steeper on average by 15% than the slope obtained by fitting a simple beta-model to the emission. This slope was also found to be correlated with cluster temperature, with some indication that the correlation is weaker for the clusters at z>0.5. We measured the mean metal abundance of the cluster gas as a function of redshift and found significant evolution, with the abundances dropping by 50% between z=0.1 and z~1. This evolution was still present (although less significant) when the cluster cores were excluded from the abundance measurements, indicating that the evolution is not solely due to the disappearance of relaxed, cool core clusters (which are known to have enhanced core metal abundances) from the population at z>0.5.Comment: 23 pages, 12 figures. Accepted for publication in ApJS. Updated to match published version. Redshifts of two clusters (RXJ1701 and CL0848) corrected and two observations of MACSJ0744.8 have been combined into one. Conclusions unchanged. A version with images of all of the clusters is available at http://hea-www.harvard.edu/~bmaughan/clusters.htm

    Application of a Self-Similar Pressure Profile to Sunyaev-Zel'dovich Effect Data from Galaxy Clusters

    Get PDF
    We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments - such as the Sunyaev-Zel'dovich Array (SZA) - are capable of probing clusters over a large range in physical scale. A model is therefore required that can accurately describe a cluster's pressure profile over a broad range of radii, from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.Comment: 28 pages, 6 figures, accepted by ApJ for publication (probably April 2009

    A Chromosome-Scale Assembly of the Garden Orach (Atriplex hortensis L.) Genome Using Oxford Nanopore Sequencing

    Get PDF
    Atriplex hortensis (2n = 2x = 18, 1C genome size 1.1 gigabases), also known as garden orach and mountain-spinach, is a highly nutritious, broadleaf annual of the Amaranthaceae-Chenopodiaceae alliance (Chenopodiaceae sensu stricto, subfam. Chenopodioideae) that has spread in cultivation from its native primary domestication area in Eurasia to other temperate and subtropical regions worldwide. Atriplex L. is a highly complex but, as understood now, a monophyletic group of mainly halophytic and/or xerophytic plants, of which A. hortensis has been a vegetable of minor importance in some areas of Eurasia (from Central Asia to the Mediterranean) at least since antiquity. Nonetheless, it is a crop with tremendous nutritional potential due primarily to its exceptional leaf and seed protein quantities (approaching 30%) and quality (high levels of lysine). Although there is some literature describing the taxonomy and production of A. hortensis, there is a general lack of genetic and genomic data that would otherwise help elucidate the genetic variation, phylogenetic positioning, and future potential of the species. Here, we report the assembly of the first high-quality, chromosome-scale reference genome for A. hortensis cv. “Golden.” Long-read data from Oxford Nanopore’s MinION DNA sequencer was assembled with the program Canu and polished with Illumina short reads. Contigs were scaffolded to chromosome scale using chromatin-proximity maps (Hi-C) yielding a final assembly containing 1,325 scaffolds with a N50 of 98.9 Mb – with 94.7% of the assembly represented in the nine largest, chromosome-scale scaffolds. Sixty-six percent of the genome was classified as highly repetitive DNA, with the most common repetitive elements being Gypsy- (32%) and Copia-like (11%) long-terminal repeats. The annotation was completed using MAKER which identified 37,083 gene models and 2,555 tRNA genes. Completeness of the genome, assessed using the Benchmarking Universal Single Copy Orthologs (BUSCO) metric, identified 97.5% of the conserved orthologs as complete, with only 2.2% being duplicated, reflecting the diploid nature of A. hortensis. A resequencing panel of 21 wild, unimproved and cultivated A. hortensis accessions revealed three distinct populations with little variation within subpopulations. These resources provide vital information to better understand A. hortensis and facilitate future study

    The Properties of X-ray Cold Fronts in a Statistical Sample of Simulated Galaxy Clusters

    Full text link
    We examine the incidence of cold fronts in a large sample of galaxy clusters extracted from a (512h^-1 Mpc) hydrodynamic/N-body cosmological simulation with adiabatic gas physics computed with the Enzo adaptive mesh refinement code. This simulation contains a sample of roughly 4000 galaxy clusters with M > 10^14 M_sun at z=0. For each simulated galaxy cluster, we have created mock 0.3-8.0 keV X-ray observations and spectroscopic-like temperature maps. We have searched these maps with a new automated algorithm to identify the presence of cold fronts in projection. Using a threshold of a minimum of 10 cold front pixels in our images, corresponding to a total comoving length L_cf > 156h^-1 kpc, we find that roughly 10-12% of all projections in a mass-limited sample would be classified as cold front clusters. Interestingly, the fraction of clusters with extended cold front features in our synthetic maps of a mass-limited sample trends only weakly with redshift out to z=1.0. However, when using different selection functions, including a simulated flux limit, the trending with redshift changes significantly. The likelihood of finding cold fronts in the simulated clusters in our sample is a strong function of cluster mass. In clusters with M>7.5x10^14 M_sun the cold front fraction is 40-50%. We also show that the presence of cold fronts is strongly correlated with disturbed morphology as measured by quantitative structure measures. Finally, we find that the incidence of cold fronts in the simulated cluster images is strongly dependent on baryonic physics.Comment: 16 pages, 21 figures, Accepted to Ap

    The Generation of Successive Unmarked Mutations and Chromosomal Insertion of Heterologous Genes in Actinobacillus pleuropneumoniae Using Natural Transformation

    Get PDF
    We have developed a simple method of generating scarless, unmarked mutations in Actinobacillus pleuropneumoniae by exploiting the ability of this bacterium to undergo natural transformation, and with no need to introduce plasmids encoding recombinases or resolvases. This method involves two successive rounds of natural transformation using linear DNA: the first introduces a cassette carrying cat (which allows selection by chloramphenicol) and sacB (which allows counter-selection using sucrose) flanked by sequences to either side of the target gene; the second transformation utilises the flanking sequences ligated directly to each other in order to remove the cat-sacB cassette. In order to ensure efficient uptake of the target DNA during transformation, A. pleuropneumoniae uptake sequences are added into the constructs used in both rounds of transformation. This method can be used to generate multiple successive deletions and can also be used to introduce targeted point mutations or insertions of heterologous genes into the A. pleuropneumoniae chromosome for development of live attenuated vaccine strains. So far, we have applied this method to highly transformable isolates of serovars 8 (MIDG2331), which is the most prevalent in the UK, and 15 (HS143). By screening clinical isolates of other serovars, it should be possible to identify other amenable strains

    Hot Gas in Galaxy Groups: Recent Observations

    Full text link
    Galaxy groups are the least massive systems where the bulk of baryons begin to be accounted for. Not simply the scaled-down versions of rich clusters following self-similar relations, galaxy groups are ideal systems to study baryon physics, which is important for both cluster cosmology and galaxy formation. We review the recent observational results on the hot gas in galaxy groups. The first part of the paper is on the scaling relations, including X-ray luminosity, entropy, gas fraction, baryon fraction and metal abundance. Compared to clusters, groups have a lower fraction of hot gas around the center (e.g., r < r_2500), but may have a comparable gas fraction at large radii (e.g., r_2500 < r < r_500). Better constraints on the group gas and baryon fractions require sample studies with different selection functions and deep observations at r > r_500 regions. The hot gas in groups is also iron poor at large radii (0.3 r_500 - 0.7 r_500). The iron content of the hot gas within the central regions (r < 0.3 r_500) correlates with the group mass, in contrast to the trend of the stellar mass fraction. It remains to be seen where the missing iron in low-mass groups is. In the second part, we discuss several aspects of X-ray cool cores in galaxy groups, including their difference from cluster cool cores, radio AGN heating in groups and the cold gas in group cool cores. Because of the vulnerability of the group cool cores to radio AGN heating and the weak heat conduction in groups, group cool cores are important systems to test the AGN feedback models and the multiphase cool core models. At the end of the paper, some outstanding questions are listed.Comment: 31 pages, 9 figures, to appear in the focus issue on "Galaxy Clusters", New Journal of Physics, http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Galaxy%20Cluster

    Pharmacoeconomic analysis of adjuvant oral capecitabine vs intravenous 5-FU/LV in Dukes' C colon cancer: the X-ACT trial

    Get PDF
    Oral capecitabine (Xeloda&lt;sup&gt;&#174;&lt;/sup&gt;) is an effective drug with favourable safety in adjuvant and metastatic colorectal cancer. Oxaliplatin-based therapy is becoming standard for Dukes' C colon cancer in patients suitable for combination therapy, but is not yet approved by the UK National Institute for Health and Clinical Excellence (NICE) in the adjuvant setting. Adjuvant capecitabine is at least as effective as 5-fluorouracil/leucovorin (5-FU/LV), with significant superiority in relapse-free survival and a trend towards improved disease-free and overall survival. We assessed the cost-effectiveness of adjuvant capecitabine from payer (UK National Health Service (NHS)) and societal perspectives. We used clinical trial data and published sources to estimate incremental direct and societal costs and gains in quality-adjusted life months (QALMs). Acquisition costs were higher for capecitabine than 5-FU/LV, but higher 5-FU/LV administration costs resulted in 57% lower chemotherapy costs for capecitabine. Capecitabine vs 5-FU/LV-associated adverse events required fewer medications and hospitalisations (cost savings £3653). Societal costs, including patient travel/time costs, were reduced by &gt;75% with capecitabine vs 5-FU/LV (cost savings £1318), with lifetime gain in QALMs of 9 months. Medical resource utilisation is significantly decreased with capecitabine vs 5-FU/LV, with cost savings to the NHS and society. Capecitabine is also projected to increase life expectancy vs 5-FU/LV. Cost savings and better outcomes make capecitabine a preferred adjuvant therapy for Dukes' C colon cancer. This pharmacoeconomic analysis strongly supports replacing 5-FU/LV with capecitabine in the adjuvant treatment of colon cancer in the UK

    Development data associated with effects of stiffness softening of 3D-TIPS elastomer nanohybrid scaffolds on tissue ingrowth, vascularization and inflammation in vivo

    Get PDF
    This DiB article contains data related to the research article entitled “Cellular responses to thermoresponsive stiffness memory elastomer nanohybrid scaffolds by 3D-TIPS” [1]. Thermoresponsive poly (urea-urethane) nanohybrid elastomer (PUU-POSS) scaffolds were implanted in rats for up to 3 months. The porous structure and tensile mechanical properties of the scaffolds are listed and compared before and after in vitro and in vivo tests. The details of histological analysis of the explants with different initial stiffness and porous structures at various time points are presented. The images and data presented support the conclusion about the coupled effects of stiffness softening and the hierarchical porous structure modulating tissue ingrowth, vascularization and macrophage polarization the article [1]
    corecore