We investigate the utility of a new, self-similar pressure profile for
fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current
SZ imaging instruments - such as the Sunyaev-Zel'dovich Array (SZA) - are
capable of probing clusters over a large range in physical scale. A model is
therefore required that can accurately describe a cluster's pressure profile
over a broad range of radii, from the core of the cluster out to a significant
fraction of the virial radius. In the analysis presented here, we fit a radial
pressure profile derived from simulations and detailed X-ray analysis of
relaxed clusters to SZA observations of three clusters with exceptionally high
quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis
of the SZ and X-ray data, we derive physical properties such as gas mass, total
mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find
that parameters derived from the joint fit to the SZ and X-ray data agree well
with a detailed, independent X-ray-only analysis of the same clusters. In
particular, we find that, when combined with X-ray imaging data, this new
pressure profile yields an independent electron radial temperature profile that
is in good agreement with spectroscopic X-ray measurements.Comment: 28 pages, 6 figures, accepted by ApJ for publication (probably April
2009