11 research outputs found

    Optimal Ranking Regime Analysis of Intra- to Multidecadal U.S. Climate Variability. Part II: Precipitation and Streamflow

    Get PDF
    In Part I of this paper, the optimal ranking regime (ORR) method was used to identify intradecadal to multidecadal (IMD) regimes in U.S. climate division temperature data during 1896–2012. Here, the method is used to test for annual and seasonal precipitation regimes during that same period. Water-year mean streamflow rankings at 125 U.S. Hydro-Climatic Data Network gauge stations are also evaluated during 1939–2011. The precipitation and streamflow regimes identified are compared with ORR-derived regimes in the Pacific decadal oscillation (PDO), the Atlantic multidecadal oscillation (AMO), and indices derived from gridded SST anomaly (SSTA) analysis data. Using a graphic display approach that allows for the comparison of IMD climate regimes in multiple time series, an interdecadal cycle in western precipitation is apparent after 1980, as is a similar cycle in northwestern streamflow. Before 1980, IMD regimes in northwestern streamflow and annual precipitation are in approximate antiphase with the PDO. One of the clearest IMD climate signals found in this analysis are post-1970 wet regimes in eastern U.S streamflow and annual precipitation, as well as in fall [September–November (SON)] precipitation. Pearson correlations between time series of annual and seasonal precipitation averaged over the eastern United States and SSTA analysis data show relatively extensive positive correlations between warming tropical SSTA and increasing fall precipitation. The possible Pacific and northern Atlantic roots of the recent eastern U.S. wet regime, as well as the general characteristics of U.S. climate variability in recent decades that emerge from this analysis and that of Part I, are discussed

    Optimal Ranking Regime Analysis of Intra- to Multidecadal U.S. Climate Variability. Part I: Temperature

    Get PDF
    The optimal ranking regime (ORR) method was used to identify intradecadal to multidecadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output—a time series’ most significant nonoverlapping periods of high or low rankings—makes it possible to graphically identify common temporal breakpoints and spatial patterns of IMD variability in the analyses of 102 climate division temperature series. This approach is also applied to annual Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) climate indices, a Northern Hemisphere annual temperature (NHT) series, and divisional annual and seasonal temperature data during 1896–2012. In addition, Pearson correlations are calculated between PDO, AMO, and NHT series and the divisional temperature series. Although PDO phase seems to be an important influence on spring temperatures in the northwestern United States, eastern temperature regimes in annual, winter, summer, and fall temperatures are more coincident with cool and warm phase AMO regimes. Annual AMO values also correlate significantly with summer temperatures along the Eastern Seaboard and fall temperatures in the U.S. Southwest. Given evidence of the abrupt onset of cold winter temperatures in the eastern United States during 1957/58, possible climate mechanisms associated with the cause and duration of the eastern U.S. warming hole period—identified here as a cool temperature regime occurring between the late 1950s and late 1980s—are discussed

    Evaluating Modeled Intra- to Multidecadal Climate Variability Using Running Mann–Whitney \u3cem\u3eZ\u3c/em\u3e Statistics

    Get PDF
    An analysis method previously used to detect observed intra- to multidecadal (IMD) climate regimes was adapted to compare observed and modeled IMD climate variations. Pending the availability of the more appropriate phase 5 Coupled Model Intercomparison Project (CMIP-5) simulations, the method is demonstrated using CMIP-3 model simulations. Although the CMIP-3 experimental design will almost certainly prevent these model runs from reproducing features of historical IMD climate variability, these simulations allow for the demonstration of the method and illustrate how the models and observations disagree. This method samples a time series’s data rankings over moving time windows, converts those ranking sets to a Mann–Whitney U statistic, and then normalizes the U statistic into a Z statistic. By detecting optimally significant IMD ranking regimes of arbitrary onset and varying duration, this process generates time series of Z values that are an adaptively low-passed and normalized transformation of the original time series. Principal component (PC) analysis of the Z series derived from observed annual temperatures at 92 U.S. grid locations during 1919–2008 shows two dominant modes: a PC1 mode with cool temperatures before the late 1960s and warm temperatures after the mid-1980s, and a PC2 mode indicating a multidecadal temperature cycle over the Southeast. Using a graphic analysis of a Z error metric that compares modeled and observed Z series, the three CMIP-3 model simulations tested here are shown to reproduce the PC1 mode but not the PC2 mode. By providing a way to compare grid-level IMD climate response patterns in observed and modeled data, this method can play a useful diagnostic role in future model development and decadal climate forecasting

    Comparing the Model-simulated Global Warming Signal to Observations Using Empirical Estimates of Unforced Noise

    Get PDF
    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20th century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario’s forced signal, but is likely inconsistent with the steepest emission scenario’s forced signal

    Reproduction of Twentieth Century Intradecadal to Multidecadal Surface Temperature Variability in Radiatively Forced Coupled Climate Models

    Get PDF
    [1] Coupled Model Intercomparison Project 3 simulations that included time-varying radiative forcings were ranked according to their ability to consistently reproduce twentieth century intradecadal to multidecadal (IMD) surface temperature variability at the 5° by 5° spatial scale. IMD variability was identified using the running Mann-Whitney Z method. Model rankings were given context by comparing the IMD variability in preindustrial control runs to observations and by contrasting the IMD variability among the ensemble members within each model. These experiments confirmed that the inclusion of time-varying external forcings brought simulations into closer agreement with observations. Additionally, they illustrated that the magnitude of unforced variability differed between models. This led to a supplementary metric that assessed model ability to reproduce observations while accounting for each model\u27s own degree of unforced variability. These two metrics revealed that discernable differences in skill exist between models and that none of the models reproduced observations at their theoretical optimum level. Overall, these results demonstrate a methodology for assessing coupled models relative to each other within a multimodel framework

    The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis

    Get PDF
    BACKGROUND: The cellular response of plants to water-deficits has both economic and evolutionary importance directly affecting plant productivity in agriculture and plant survival in the natural environment. Genes induced by water-deficit stress have been successfully enumerated in plants that are relatively sensitive to cellular dehydration, however we have little knowledge as to the adaptive role of these genes in establishing tolerance to water loss at the cellular level. Our approach to address this problem has been to investigate the genetic responses of plants that are capable of tolerating extremes of dehydration, in particular the desiccation-tolerant bryophyte, Tortula ruralis. To establish a sound basis for characterizing the Tortula genome in regards to desiccation tolerance, we analyzed 10,368 expressed sequence tags (ESTs) from rehydrated rapid-dried Tortula gametophytes, a stage previously determined to exhibit the maximum stress induced change in gene expression. RESULTS: The 10, 368 ESTs formed 5,563 EST clusters (contig groups representing individual genes) of which 3,321 (59.7%) exhibited similarity to genes present in the public databases and 2,242 were categorized as unknowns based on protein homology scores. The 3,321 clusters were classified by function using the Gene Ontology (GO) hierarchy and the KEGG database. The results indicate that the transcriptome contains a diverse population of transcripts that reflects, as expected, a period of metabolic upheaval in the gametophyte cells. Much of the emphasis within the transcriptome is centered on the protein synthetic machinery, ion and metabolite transport, and membrane biosynthesis and repair. Rehydrating gametophytes also have an abundance of transcripts that code for enzymes involved in oxidative stress metabolism and phosphorylating activities. The functional classifications reflect a remarkable consistency with what we have previously established with regards to the metabolic activities that are important in the recovery of the gametophytes from desiccation. A comparison of the GO distribution of Tortula clusters with an identical analysis of 9,981 clusters from the desiccation sensitive bryophyte species Physcomitrella patens, revealed, and accentuated, the differences between stressed and unstressed transcriptomes. Cross species sequence comparisons indicated that on the whole the Tortula clusters were more closely related to those from Physcomitrella than Arabidopsis (complete genome BLASTx comparison) although because of the differences in the databases there were more high scoring matches to the Arabidopsis sequences. The most abundant transcripts contained within the Tortula ESTs encode Late Embryogenesis Abundant (LEA) proteins that are normally associated with drying plant tissues. This suggests that LEAs may also play a role in recovery from desiccation when water is reintroduced into a dried tissue. CONCLUSION: The establishment of a rehydration EST collection for Tortula ruralis, an important plant model for plant stress responses and vegetative desiccation tolerance, is an important step in understanding the genome level response to cellular dehydration. The type of transcript analysis performed here has laid the foundation for more detailed functional and genome level analyses of the genes involved in desiccation tolerance in plants

    Managing Weather Risk for Cotton in Texas High Plains with Optimal Temporal Allocation of Irrigation Water

    No full text
    Texas High Plains (THP) is a major cotton producing region in the US with low rainfall and decreasing irrigation water availability. Hence stochastic rainfall poses considerable production risk in the region and developing strategies to maximize the average profit and minimize the year to year variability in profits is an important concern. In this study, Cotton2K, which is a process based cotton growth simulation model, was used along with an economic optimization model to identify the optimal strategies for temporal allocation of irrigation water for center pivot irrigated cotton in THP. The study analyzed different strategies to allocate irrigation water during one growing season among three different growth stages of cotton (planting to first bloom, first bloom to first open boll, and first open ball to 60% open boll) at four different sub-optimal levels for irrigation water availability (6, 9, 12, and 15 acre-inches). The results showed that the profit and utility maximizing strategy was to apply all available irrigation water during stage II when six, nine, and twelve acre-inches of irrigation water were available. When fifteen inches of irrigation water was available, the optimal strategy was to use 90% of the available irrigation water in stage II and the rest in stage III. The sensitivity analysis indicated that these optimal decisions were not sensitive to variations in price of cotton lint and farmer’s attitude towards risk

    Projecting the Economic Impact and Level of Groundwater Use in the Southern High Plains under Alternative Climate Change Forecasts Using a Coupled Economic and Hydrologic Model

    No full text
    This research estimates the impact that eight alternative climate change scenarios are likely to have on agricultural returns and the useful life of the Ogallala aquifer in the Southern High Plains (SHP) over a 90-year planning horizon, relative to the situation where climate conditions are maintained at the historical average condition for 1960 to 2009. The empirical analysis is accomplished with the aid of an integrated water policy model that couples a dynamic economic optimization model to a detailed aquifer model of the Southern Ogallala Aquifer. The integrated model controls for the effects of spatial heterogeneity in land use practices and aquifer characteristics. For each climate scenario, changes in annual economic returns, irrigated acres, water use, and aquifer storage levels are measured relative to respective estimates derived from the historic no change climate scenario. The annual 90-year time path of economic returns, water use, and cropping patterns under the eight climate change scenarios significantly varies from the baseline forecast. Moreover, relative to a baseline condition that estimates significant annual decreases in economic returns due to continued groundwater mining, the climate change scenarios generally suggest climate change will mitigate the cost of increasing groundwater scarcity due to a complimentary effect between crop yields and the various climate change scenarios
    corecore