197 research outputs found

    Area Invariance of Apparent Horizons under Arbitrary Boosts

    Full text link
    It is a well known analytic result in general relativity that the 2-dimensional area of the apparent horizon of a black hole remains invariant regardless of the motion of the observer, and in fact is independent of the t=constant t=constant slice, which can be quite arbitrary in general relativity. Nonetheless the explicit computation of horizon area is often substantially more difficult in some frames (complicated by the coordinate form of the metric), than in other frames. Here we give an explicit demonstration for very restricted metric forms of (Schwarzschild and Kerr) vacuum black holes. In the Kerr-Schild coordinate expression for these spacetimes they have an explicit Lorentz-invariant form. We consider {\it boosted} versions with the black hole moving through the coordinate system. Since these are stationary black hole spacetimes, the apparent horizons are two dimensional cross sections of their event horizons, so we compute the areas of apparent horizons in the boosted space with (boosted) t=constant t = constant , and obtain the same result as in the unboosted case. Note that while the invariance of area is generic, we deal only with black holes in the Kerr-Schild form, and consider only one particularly simple change of slicing which amounts to a boost. Even with these restrictions we find that the results illuminate the physics of the horizon as a null surface and provide a useful pedagogical tool. As far as we can determine, this is the first explicit calculation of this type demonstrating the area invariance of horizons. Further, these calculations are directly relevant to transformations that arise in computational representation of moving black holes. We present an application of this result to initial data for boosted black holes.Comment: 19 pages, 3 figures. Added a new section and 2 plots along with a coautho

    The Near-Linear Regime of Gravitational Waves in Numerical Relativity

    Get PDF
    We report on a systematic study of the dynamics of gravitational waves in full 3D numerical relativity. We find that there exists an interesting regime in the parameter space of the wave configurations: a near-linear regime in which the amplitude of the wave is low enough that one expects the geometric deviation from flat spacetime to be negligible, but nevertheless where nonlinearities can excite unstable modes of the Einstein evolution equations causing the metric functions to evolve out of control. The implications of this for numerical relativity are discussed.Comment: 10 pages, 2 postscript figures, revised tex

    Stable Topologies of Event Horizon

    Get PDF
    In our previous work, it was shown that the topology of an event horizon (EH) is determined by the past endpoints of the EH. A torus EH (the collision of two EH) is caused by the two-dimensional (one-dimensional) set of the endpoints. In the present article, we examine the stability of the topology of the EH. We see that a simple case of a single spherical EH is unstable. Furthermore, in general, an EH with handles (a torus, a double torus, ...) is structurally stable in the sense of catastrophe theory.Comment: 21 pages, revtex, five figures containe

    Particle creation in a colliding plane wave spacetime: wave packet quantization

    Full text link
    We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monocromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.Comment: 23, latex, figures available by fa

    Dynamics of Gravitational Waves in 3D: Formulations, Methods, and Tests

    Full text link
    The dynamics of gravitational waves is investigated in full 3+1 dimensional numerical relativity, emphasizing the difficulties that one might encounter in numerical evolutions, particularly those arising from non-linearities and gauge degrees of freedom. Using gravitational waves with amplitudes low enough that one has a good understanding of the physics involved, but large enough to enable non-linear effects to emerge, we study the coupling between numerical errors, coordinate effects, and the nonlinearities of the theory. We discuss the various strategies used in identifying specific features of the evolution. We show the importance of the flexibility of being able to use different numerical schemes, different slicing conditions, different formulations of the Einstein equations (standard ADM vs. first order hyperbolic), and different sets of equations (linearized vs. full Einstein equations). A non-linear scalar field equation is presented which captures some properties of the full Einstein equations, and has been useful in our understanding of the coupling between finite differencing errors and non-linearites. We present a set of monitoring devices which have been crucial in our studying of the waves, including Riemann invariants, pseudo-energy momentum tensor, hamiltonian constraint violation, and fourier spectrum analysis.Comment: 34 pages, 14 figure

    Phenomenological template family for black-hole coalescence waveforms

    Full text link
    Recent progress in numerical relativity has enabled us to model the non-perturbative merger phase of the binary black-hole coalescence problem. Based on these results, we propose a phenomenological family of waveforms which can model the inspiral, merger, and ring-down stages of black hole coalescence. We also construct a template bank using this family of waveforms and discuss its implementation in the search for signatures of gravitational waves produced by black-hole coalescences in the data of ground-based interferometers. This template bank might enable us to extend the present inspiral searches to higher-mass binary black-hole systems, i.e., systems with total mass greater than about 80 solar masses, thereby increasing the reach of the current generation of ground-based detectors.Comment: Minor changes, Submitted to Class. Quantum Grav. (Proc. GWDAW11

    Renormalized spin coefficients in the accumulated orbital phase for unequal mass black hole binaries

    Get PDF
    We analyze galactic black hole mergers and their emitted gravitational waves. Such mergers have typically unequal masses with mass ratio of the order 1/10. The emitted gravitational waves carry the inprint of spins and mass quadrupoles of the binary components. Among these contributions, we consider here the quasi-precessional evolution of the spins. A method of taking into account these third post-Newtonian (3PN) effects by renormalizing (redefining) the 1.5 PN and 2PN accurate spin contributions to the accumulated orbital phase is developed.Comment: 10 pages, to appear in Class. Quantum Grav. GWDAW13 Proceedings Special Issue, v2: no typos conjectur

    Scaling Property of the global string in the radiation dominated universe

    Get PDF
    We investigate the evolution of the global string network in the radiation dominated universe by use of numerical simulations in 3+1 dimensions. We find that the global string network settles down to the scaling regime where the energy density of global strings, ρs\rho_{s}, is given by ρs=ξμ/t2\rho_{s} = \xi \mu / t^2 with μ\mu the string tension per unit length and the scaling parameter, ξ(0.91.3)\xi \sim (0.9-1.3), irrespective of the cosmic time. We also find that the loop distribution function can be fitted with that predicted by the so-called one scale model. Concretely, the number density, nl(t)n_{l}(t), of the loop with the length, ll, is given by nl(t)=ν/[t3/2(l+κt)5/2]n_{l}(t) = \nu/[t^{3/2} (l + \kappa t)^{5/2}] where ν0.0865\nu \sim 0.0865 and κ\kappa is related with the Nambu-Goldstone(NG) boson radiation power from global strings, PP, as P=κμP = \kappa \mu with κ0.535\kappa \sim 0.535. Therefore, the loop production function also scales and the typical scale of produced loops is nearly the horizon distance. Thus, the evolution of the global string network in the radiation dominated universe can be well described by the one scale model in contrast with that of the local string network.Comment: 18 pages, 9 figures, to appear in Phys. Rev.

    Type IIB Colliding Plane Waves

    Full text link
    Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+22n+2--dimensional Einstein gravity with a n+1n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n=4n=4, our results pertain to the collision of two ten-dimensional type IIB Blau - Figueroa o'Farrill - Hull - Papadopoulos plane waves.Comment: 20+10 pages, 2 figures, uses JHEP3.cls; v2: refs [3,10,22] corrected, remark added below (3.9) on inexistence of conformally flat CPW in our ansatz, final version to appear in JHE

    Status of NINJA: the Numerical INJection Analysis project

    Get PDF
    The 2008 NRDA conference introduced the Numerical INJection Analysis project (NINJA), a new collaborative effort between the numerical relativity community and the data analysis community. NINJA focuses on modeling and searching for gravitational wave signatures from the coalescence of binary system of compact objects. We review the scope of this collaboration and the components of the first NINJA project, where numerical relativity groups shared waveforms and data analysis teams applied various techniques to detect them when embedded in colored Gaussian noise
    corecore