156 research outputs found

    Beta-delayed deuteron emission from 11Li: decay of the halo

    Get PDF
    The deuteron-emission channel in the beta-decay of the halo-nucleus 11Li was measured at the ISAC facility at TRIUMF by implanting post-accelerated 11Li ions into a segmented silicon detector. The events of interest were identified by correlating the decays of 11Li with those of the daughter nuclei. This method allowed the energy spectrum of the emitted deuterons to be extracted, free from contributions from other channels, and a precise value for the branching ratio B_d = 1.30(13) x 10-4 to be deduced for E(c.m.) > 200 keV. The results provide the first unambiguous experimental evidence that the decay takes place essentially in the halo of 11Li, and that it proceeds mainly to the 9Li + d continuum, opening up a new means to study of the halo wave function of 11Li.Comment: 4 pages, 3 figure

    β decay of Na32

    Get PDF
    The β-decay of Na32 has been studied using β-γ coincidences. New transitions and levels are tentatively placed in the level scheme of Mg32 from an analysis of γ-γ and β-γ-γ coincidences. The observation of the indirect feeding of the 2321 keV state in Mg32 removes some restrictions previously placed on the spin assignment for this state. No evidence of a state at 2117 keV in Mg32 is found. Previously unobserved weak transitions up to 5.4 MeV were recorded but could not be placed in the decay scheme of Na32. © 2007 The American Physical Society

    Gamma-ray spectroscopy at TRIUMF-ISAC

    Get PDF
    The 8π spectrometer at TRIUMF-ISAC consists of 20 Compton-suppressed germanium detectors and various auxiliary devices. The Ge array, once used for studies of nuclei at high angular momentum, has been transformed into the world\u27s most powerful device dedicated to radioactive-decay studies. Many improvements in the spectrometer have been made, including a high-throughput data acquisition system, installation of a moving tape collector, incorporation of an array of 20 plastic scintillators for β-particle tagging, 5 Si(Li) detectors for conversion electrons, and 10 BaF2 detectors for fast-lifetime measurements. Experiments can be performed where data from all detectors are collected simultaneously, resulting in a very detailed view of the nucleus through radioactive decay. A number of experimental programmes have been launched that take advantage of the versatility of the spectrometer, and the intense beams available at TRIUMF-ISAC. © 2006 American Institute of Physics

    Gamma-ray spectroscopy at TRIUMF-ISAC: The new frontier of radioactive ion beam research

    Get PDF
    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRTUMF Isotope Separator and Accelerator (TSAC). At IS AC the 871 spectrometer and its associated auxiliary detectors is optimize for p-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the STI spectrometer. © 2009 American Institute of Physics

    Assessment of epidermal growth factor receptor (EGFR) expression in primary colorectal carcinomas and their related metastases on tissue sections and tissue microarray

    Get PDF
    Metastatic colorectal carcinomas (CRC) resistant to chemotherapy may benefit from targeting monoclonal therapy cetuximab when they express the epidermal growth factor receptor (EGFR). Because of its clinical implications, we studied EGFR expression by immunohistochemistry on tissue sections of primary CRC (n=32) and their related metastases (n=53). A tissue microarray (TMA) was generated from the same paraffin blocks to determine whether this technique could be used for EGFR screening in CRC. On tissue sections, 84% of the primary CRC and 94% of the metastases were EGFR-positive. When matched, they showed a concordant EGFR-positive status in 78% of the cases. Moreover, staining intensity and extent of EGFR-positive cells in the primary CRC correlated with those observed in the synchronous metastases. On TMA, 65% of the primary CRC, 66% of the metastases, and 43% of the matched primary CRC metastases were EGFR-positive. There was no concordant EGFR status between the primary and the metastatic sites. A strong discrepancy of EGFR status was noted between TMA and tissue sections. In conclusion, EGFR expression measured in tissue sections from primary CRC and their related metastases was found to be similar and frequent, but it was significantly underestimated by the TMA technique

    The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    Get PDF
    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Ionization and scintillation of nuclear recoils in gaseous xenon

    Get PDF
    Abstract Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.This work was supported by the following agencies and institutions: the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, and the National Energy Research Scientific Computing Center (NERSC), supported by the Office of Science of the U.S. Department of Energy, both under Contract no. DE-AC02-05CH11231; the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under Grants CONSOLIDER-Ingenio 2010 C5D2008-0037 (CUP), FPA2009-13697-004-04, FPA2009-13697-C04-01, FIS2012-37947-C04-01, FIS2012-37947-C04-02, FIS2012-37947-C04-03, and FIS2012-37947-C04-04; and the Portuguese FCT and FEDER through the program COMPETE, Projects PTDC/FIS/103860/2008 and PTDC/FIS/112272/2009. J. Renner acknowledges the support of a Department of Energy National Nuclear Security Administration Stewardship Science Graduate Fellowship, grant number DE-FC52-08NA28752.Renner, J.; Gehman, VM.; Goldschmidt, A.; Matis, HS.; Miller, T.; Nakajima, Y.; Nygren, D.... (2015). Ionization and scintillation of nuclear recoils in gaseous xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 793:62-74. https://doi.org/10.1016/j.nima.2015.04.057S627479

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore