2,628 research outputs found

    Remarks on the consistency of minimal deviations from General Relativity

    Get PDF
    We study the consequences of the modification of the phase space structure of General Relativity imposed by breaking the full diffeomorphism invariance but retaining the time foliation preserving diffeomorphisms. We examine the different sectors in phase space that satisfy the new structure of constraints. For some sectors we find an infinite tower of constraints. In spite of that, we also show that these sectors allow for solutions, among them some well known families of black hole and cosmologies which fulfill all the constraints. We raise some physical concerns on the consequences of an absolute Galilean time, on the thermodynamical pathologies of such models and on their unusual vacuum structure.Comment: latex 28 pages, 1 figure. Added comments and a reference. Text improved

    The Theory of a Quantum Noncanonical Field in Curved Spacetimes

    Full text link
    Much attention has been recently devoted to the possibility that quantum gravity effects could lead to departures from Special Relativity in the form of a deformed Poincar\`e algebra. These proposals go generically under the name of Doubly or Deformed Special Relativity (DSR). In this article we further explore a recently proposed class of quantum field theories, involving noncanonically commuting complex scalar fields, which have been shown to entail a DSR-like symmetry. An open issue for such theories is whether the DSR-like symmetry has to be taken as a physically relevant symmetry, or if in fact the "true" symmetries of the theory are just rotations and translations while boost invariance has to be considered broken. We analyze here this issue by extending the known results to curved spacetime under both of the previous assumptions. We show that if the symmetry of the free theory is taken to be a DSR-like realization of the Poincar\'e symmetry, then it is not possible to render such a symmetry a gauge symmetry of the curved physical spacetime. However, it is possible to introduce an auxiliary spacetime which allows to describe the theory as a standard quantum field theory in curved spacetime. Alternatively, taking the point of view that the noncanonical commutation of the fields actually implies a breakdown of boost invariance, the physical spacetime manifold has to be foliated in surfaces of simultaneity and the field theory can be coupled to gravity by making use of the ADM prescription.Comment: 9 pages, no figure

    Development of an internal restraint system for an integrated restraint-pressure suit system Report, 7 Jun. 1965 - 28 Jun. 1966

    Get PDF
    Internal restraint system, composed of liquid filled garment and separate auxiliary system, for integrated restraint pressure suit for acceleration protection and thermal transpor

    Study of time lags in HETE-2 Gamma-Ray Bursts with redshift: search for astrophysical effects and Quantum Gravity signature

    Full text link
    The study of time lags between spikes in Gamma-Ray Bursts light curves in different energy bands as a function of redshift may lead to the detection of effects due to Quantum Gravity. We present an analysis of 15 Gamma-Ray Bursts with measured redshift, detected by the HETE-2 mission between 2001 and 2006 in order to measure time lags related to astrophysical effects and search for Quantum Gravity signature in the framework of an extra-dimension string model. The use of photon-tagged data allows us to consider various energy ranges. Systematic effects due to selection and cuts are evaluated. No significant Quantum Gravity effect is detected from the study of the maxima of the light curves and a lower limit at 95% Confidence Level on the Quantum Gravity scale parameter of 3.2x10**15 GeV is set.Comment: 4 pages, 5 figures. v3: Error corrected in Eq. 1. Results updated. Proceedings of the 30th ICRC, Merida, Mexico (2007

    Strong field effects on binary systems in Einstein-aether theory

    Full text link
    "Einstein-aether" theory is a generally covariant theory of gravity containing a dynamical preferred frame. This article continues an examination of effects on the motion of binary pulsar systems in this theory, by incorporating effects due to strong fields in the vicinity of neutron star pulsars. These effects are included through an effective approach, by treating the compact bodies as point particles with nonstandard, velocity dependent interactions parametrized by dimensionless "sensitivities". Effective post-Newtonian equations of motion for the bodies and the radiation damping rate are determined. More work is needed to calculate values of the sensitivities for a given fluid source, so precise constraints on the theory's coupling constants cannot yet be stated. It is shown, however, that strong field effects will be negligible given current observational uncertainties if the dimensionless couplings are less than roughly 0.01 and two conditions that match the PPN parameters to those of pure general relativity are imposed. In this case, weak field results suffice and imply one further condition on the couplings. Thus, there exists a one-parameter family of Einstein-aether theories with "small-enough" couplings that passes all current observational tests. No conclusion can yet be reached for large couplings.Comment: 23 pages, 1 figure; v2: fixed error in Eqn. (70) and resulting bounds on c'

    Constraints on Lorentz Invariance Violation using INTEGRAL/IBIS observations of GRB041219A

    Get PDF
    One of the experimental tests of Lorentz invariance violation is to measure the helicity dependence of the propagation velocity of photons originating in distant cosmological obejcts. Using a recent determination of the distance of the Gamma-Ray Burst GRB 041219A, for which a high degree of polarization is observed in the prompt emission, we are able to improve by 4 orders of magnitude the existing constraint on Lorentz invariance violation, arising from the phenomenon of vacuum birefringence.Comment: 5 pages, 3 figures, accepted for publication as a Rapid Communication in Physical Review
    corecore