Much attention has been recently devoted to the possibility that quantum
gravity effects could lead to departures from Special Relativity in the form of
a deformed Poincar\`e algebra. These proposals go generically under the name of
Doubly or Deformed Special Relativity (DSR). In this article we further explore
a recently proposed class of quantum field theories, involving noncanonically
commuting complex scalar fields, which have been shown to entail a DSR-like
symmetry. An open issue for such theories is whether the DSR-like symmetry has
to be taken as a physically relevant symmetry, or if in fact the "true"
symmetries of the theory are just rotations and translations while boost
invariance has to be considered broken. We analyze here this issue by extending
the known results to curved spacetime under both of the previous assumptions.
We show that if the symmetry of the free theory is taken to be a DSR-like
realization of the Poincar\'e symmetry, then it is not possible to render such
a symmetry a gauge symmetry of the curved physical spacetime. However, it is
possible to introduce an auxiliary spacetime which allows to describe the
theory as a standard quantum field theory in curved spacetime. Alternatively,
taking the point of view that the noncanonical commutation of the fields
actually implies a breakdown of boost invariance, the physical spacetime
manifold has to be foliated in surfaces of simultaneity and the field theory
can be coupled to gravity by making use of the ADM prescription.Comment: 9 pages, no figure