159 research outputs found

    Checkpoint Inhibitors in Cancer Therapy: Clinical Benefits for Head and Neck Cancers

    Get PDF
    Recently, considerable progress has been achieved in cancer immunotherapy. Targeted immune checkpoint therapies have been established for several forms of cancers, which resulted in a tremendous positive impact on patient survival, even in more advanced tumor stages. With a better understanding of cellular responses to immune checkpoint therapies, it will soon be feasible to find targeted compounds which will make personalized medicine practicable. This is a great opportunity, but it also sets tremendous challenges on both the scientific and clinical aspects. Head and neck tumors evade immune surveillance through various mechanisms. They contain fewer lymphocytes (natural killer cells) than normal tissue with an accumulation of immunosuppressive regulatory T cells. Standard therapies for HNSCC, such as surgery, radiation, and chemotherapy, are becoming more advantageous by targeting immune checkpoints and employing combination therapies. The purpose of this review is to provide an overview of the expanded therapeutic options, particularly the combination of immune checkpoint inhibition with various conventional and novel therapeutics for head and neck tumor patients. regulatory T cells. Standard therapies for HNSCC, such as surgery, radiation, and chemotherapy, are becoming more advantageous by targeting immune checkpoints and employing combination therapies. The purpose of this review is to provide an overview of the expanded therapeutic options, particularly the combination of immune checkpoint inhibition with various conventional and novel therapeutics for head and neck tumor patients

    A direct PCR approach with low-biomass insert opens new horizons for molecular sciences on cryptogam communities

    Get PDF
    Molecular sequence data have transformed research on cryptogams (e.g., lichens, microalgae, fungi, and symbionts thereof) but methods are still strongly hampered by the small size and intermingled growth of the target organisms, poor cultivability and detrimental effects of their secondary metabolites. Here, we aim to showcase examples on which a modified direct PCR approach for diverse aspects of molecular work on environmental samples concerning biocrusts, biofilms, and cryptogams gives new options for the research community. Unlike traditional approaches, this methodology only requires biomass equivalent to colonies and fragments of 0.2 mm in diameter, which can be picked directly from the environmental sample, and includes a quick DNA lysis followed by a standardized PCR cycle that allows co-cycling of various organisms/target regions in the same run. We demonstrate that this modified method can (i) amplify the most widely used taxonomic gene regions and those used for applied and environmental sciences from single colonies and filaments of free-living cyanobacteria, bryophytes, fungi, and lichens, including their mycobionts, chlorobionts, and cyanobionts from both isolates and in situ material during co-cycling; (ii) act as a tool to confirm that the dominant lichen photobiont was isolated from the original sample; and (iii) optionally remove inhibitory secondary lichen substances. Our results represent examples which highlight the method’s potential for future applications covering mycology, phycology, biocrusts, and lichenology, in particular

    Distinct Mechanisms of IgM Antibody-Mediated Acquired von Willebrand Syndrome and Successful Treatment with Recombinant von Willebrand Factor in One Patient

    Get PDF
    Acquired von Willebrand Syndrome (AVWS) is a rare coagulation disorder which can be associated with IgM paraproteinaemia. Recently, recombinant von Willebrand factor (rVWF) has become available for the treatment of bleedings in patients with inherited von Willebrand disease, but experience in patients with AVWS is limited. We report on 2 patients with AVWS with underlying IgM paraproteinaemia with distinct underlying pathomechanisms. In 1 patient, the paraprotein built unspecific complexes with von Willebrand factor (VWF). In the other patient, we were able to detect an IgM antibody against VWF. Bleeding in this patient was successfully treated with rVWF. To our knowledge, this is the first report about the successful use of rVWF in a patient with AVWS with the detection of a VWF-specific antibody

    Unusually swift response of relapsed Burkitt leukemia to R‐DHAP

    Get PDF
    Burkitt leukemia (BL) represents a highly aggressive lymphoma characterized by proliferation rates of around 100%, and a frequent spread into the central nervous system. If standard frontline chemotherapy fails, the prognosis is usually dismal, and reports on successful effective salvage therapy strategies for patients with relapsed/refractory BL are scant. Here, we report on a 40-year-old female patient who suffered an early relapse of BL three months after the completion of frontline chemoimmunotherapy. Strikingly, after only one cycle of R-DHAP chemotherapy, the patient showed CR of BL enabling swift transition to a consolidating allogeneic stem cell transplantation. A 40-year-old previously healthy woman presented to the hospital with fatigue and incessant epistaxis, and a diagnosis of BL was made upon histological examination of a bone marrow biopsy. Treatment was initiated according to the GMALL 2002 B-NHL/ALL protocol, which could induce complete molecular remission. Nevertheless, three months after chemotherapy, the patient exhibited BL relapse in the bone marrow, and on Fluorodeoxyglucose (FDG)–PET-imaging. The relapse therapy was started with R-DHAP, and after only one cycle, the patient once again entered complete remission (CR) paving the way for allogeneic stem cell transplantation. Unfortunately, the patient again relapsed five months after transplantation prompting salvage therapy with R-DHAC and the execution of the second stem cell transplantation. However, one month after the second transplantation the patient presented with chemorefractory meningeosis leukemia resulting in the initiation of palliative care treatment. In summary, we report on rapid CR of relapsed BL after a single cycle of rituximab-DHAP. Given a paucity of clinical trials on the treatment of patients with r/r BL, we intend to highlight the potential efficacy of rituximab-DHAP as salvage therapy in those patients

    Reconfigurable Si Nanowire Nonvolatile Transistors

    Get PDF
    Reconfigurable transistors merge unipolar p- and n-type characteristics of field-effect transistors into a single programmable device. Combinational circuits have shown benefits in area and power consumption by fine-grain reconfiguration of complete logic blocks at runtime. To complement this volatile programming technology, a proof of concept for individually addressable reconfigurable nonvolatile transistors is presented. A charge-trapping stack is incorporated, and four distinct and stable states in a single device are demonstrated

    Gemcitabine Maintenance Therapy in Patients With Metastasized Soft Tissue Sarcomas

    Get PDF
    Background: Metastasized soft-tissue sarcomas still pose a significant therapeutic challenge given the limited efficacy of currently available multimodal treatment strategies. Recent progress in molecular characterization of sarcoma subtypes has enabled successful personalized therapy approaches in a minority of selected patients with targetable mutations. However, in the majority of patients with refractory soft tissue sarcomas, long-term survival remains poor. Methods: We report on three adult patients with various soft tissue sarcomas subjected to Gemcitabine maintenance therapy. Tumor entities included leiomyosarcoma of the pancreas (patient 1), undifferentiated pleomorphic sarcoma of the right femur (patient 2), and peri-aortic leiomyosarcoma (patient 3). Metastatic sites encompassed liver, lung, and bones. All patients received Gemcitabine maintenance therapy until disease progression following prior salvage chemotherapy with Docetaxel and Gemcitabine. Patients were treated outside of clinical trials. Response assessment was based on radiological imaging. Results: In response to salvage chemotherapy with Docetaxel and Gemcitabine, one patient exhibited a partial remission, and two patients showed stable disease. Patient 1 exhibited stable disease for 6 months during Gemcitabine maintenance therapy before suffering rapid progression of hepatic metastases. Patient 2 underwent 21 months of Gemcitabine maintenance therapy, which was discontinued after progressive pulmonary metastases were detected. Patient 3 is still being treated with Gemcitabine maintenance therapy. Remarkably, owing to significant chemotherapy-associated hematotoxicity, the dose of Gemcitabine dose was reduced by two-thirds. Nevertheless, stable disease with constant pulmonary metastases has been maintained in this patient for 14 months. Conclusions: Gemcitabine maintenance therapy following prior Docetaxel and Gemcitabine chemotherapy is manageable and reveals potential benefits for patients with aggressive metastasized soft tissue sarcomas. Prospective trials evaluating Gemcitabine maintenance therapy are encouraged

    Crizotinib in Advanced, Chemoresistant Anaplastic Lymphoma Kinase-Positive Lymphoma Patients

    Get PDF
    Anaplastic lymphoma kinase (ALK)-positive lymphomas respond to chemotherapy, but relapses, which bear a poor prognosis, occur. Crizotinib inhibits ALK in vitro and in vivo and was administered as monotherapy to 11 ALK+ lymphoma patients who were resistant/refractory to cytotoxic therapy. The overall response rate was 10 of 11 (90.9%; 95% confidence interval [CI] = 58.7% to 99.8%). Disease status at the latest follow-up is as follows: four patients are in complete response (CR) (months >21, >30, >35, >40) under continuous crizotinib administration; 4 patients had progression of disease (months 1, 2, 2, 2); 1 patient obtained CR on crizotinib, received an allogeneic bone marrow transplant, and is in CR; 2 patients (treated before and/or after allogeneic bone marrow transplant) obtained and are still in CR but they have stopped crizotinib. Overall and progression-free survival rates at 2 years are 72.7% (95% CI = 39.1% to 94.0%) and 63.7% (95% CI = 30.8% to 89.1%), respectively. ALK mutations conferring resistance to crizotinib in vitro could be identified in relapsed patients. Crizotinib exerted a potent antitumor activity with durable responses in advanced, heavily pretreated ALK+ lymphoma patients, with a benign safety profil

    Coronavirus disease 2019 induces multi‐lineage, morphologic changes in peripheral blood cells

    Get PDF
    The clinical course of coronavirus disease 2019 (COVID‐19) varies from mild symptoms to acute respiratory distress syndrome, hyperinflammation, and coagulation disorder. The hematopoietic system plays a critical role in the observed hyperinflammation, particularly in severely ill patients. We conducted a prospective diagnostic study performing a blood differential analyzing morphologic changes in peripheral blood of COVID‐19 patients. COVID‐19 associated morphologic changes were defined in a training cohort and subsequently validated in a second cohort (n = 45). Morphologic aberrations were further analyzed by electron microscopy (EM) and flow cytometry of lymphocytes was performed. We included 45 COVID‐19 patients in our study (median age 58 years; 82% on intensive care unit). The blood differential showed a specific pattern of pronounced multi‐lineage aberrations in lymphocytes (80%) and monocytes (91%) of patients. Overall, 84%, 98%, and 98% exhibited aberrations in granulopoiesis, erythropoiesis, and thrombopoiesis, respectively. Electron microscopy revealed the ultrastructural equivalents of the observed changes and confirmed the multi‐lineage aberrations already seen by light microscopy. The morphologic pattern caused by COVID‐19 is characteristic and underlines the serious perturbation of the hematopoietic system. We defined a hematologic COVID‐19 pattern to facilitate further independent diagnostic analysis and to investigate the impact on the hematologic system during the clinical course of COVID‐19 patients

    Synthesis of 3-Alkyl Pyridinium Alkaloids from the Arctic Sponge Haliclona viscosa

    Get PDF
    3-Alkyl pyridinium alkaloids (3-APAs) are common secondary metabolites in marine sponges of the order Haplosclerida. In recent years, our laboratory has isolated and synthesized several new members of this family such as haliclamines C–F, viscosamine, viscosaline and a cyclic monomer. All of them were isolated from the Arctic sponge Haliclona viscosa collected in Spitsbergen, Norway. In this article we report the syntheses of these secondary metabolites from Haliclona viscosa and related compounds and give a short overview of the bioactivity
    • 

    corecore