90 research outputs found
Interleukin-1 beta - a friend or foe in malignancies?
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development
Targeting of immune cells with trimannosylated liposomes
Dendritic cells (DCs) are a compelling target in cancer immunotherapy as they initialize strong antigen-specific immune responses. Drug delivery systems (DDSs) such as liposomes provide the opportunity to deliver antigens and immunostimulatory molecules to DCs, which in turn initiate an antigen-specific immune response. To address predominantly DCs, DDSs need to be equipped with targeting moieties. This study evaluates liposomes, bearing the oligosaccharide trimannose on their surface, for their ability to address DCs in vitro and in vivo. Trimannose as a saccharidic structure is known to be recognized by receptors on the surface of DCs. To obtain trimannosylated liposomes, azide-bearing trimannose is coupled to alkyne-functionalized hyperbranched polyglycerol (hbPG) with a bis(hexadecyl)glycerol (BisHD) anchor in a Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). To enable tracking of the liposomes in vivo, the trimannosylated BisHD-hbPG lipids are radiolabeled with 18F in a CuAAC. Subsequently, liposomes are produced via the thin-film hydration method followed by extrusion. The behavior of the trimannosylated liposomes is evaluated in in vitro cell binding assays and in vivo µPET and ex vivo biodistribution studies in healthy C57BL/6 mice and the results are compared to similar liposomes not bearing trimannose on their surface
Wedge Local Deformations of Charged Fields leading to Anyonic Commutation Relations
The method of deforming free fields by using multiplication operators on Fock
space, introduced by G. Lechner in [11], is generalized to a charged free field
on two- and three-dimensional Minkowski space. In this case the deformation
function can be chosen in such a way that the deformed fields satisfy
generalized commutation relations, i.e. they behave like Anyons instead of
Bosons. The fields are "polarization free" in the sense that they create only
one-particle states from the vacuum and they are localized in wedges (or "paths
of wedges"), which makes it possible to circumvent a No-Go theorem by J. Mund
[12], stating that there are no free Anyons localized in spacelike cones. The
two-particle scattering matrix, however, can be defined and is different from
unity
Complement-opsonized nano-carriers are bound by dendritic cells (DC) via complement receptor (CR)3, and by B cell subpopulations via CR-1/2, and affect the activation of DC and B-1 cells
The development of nanocarriers (NC) for biomedical applications has gained large interest due to their potential to co-deliver drugs in a cell-type-targeting manner. However, depending on their surface characteristics, NC accumulate serum factors, termed protein corona, which may affect their cellular binding. We have previously shown that NC coated with carbohydrates to enable biocompatibility triggered the lectin-dependent complement pathway, resulting in enhanced binding to B cells via complement receptor (CR)1/2. Here we show that such NC also engaged all types of splenic leukocytes known to express CR3 at a high rate when NC were pre-incubated with native mouse serum resulting in complement opsonization. By focusing on dendritic cells (DC) as an important antigen-presenting cell type, we show that CR3 was essential for binding/uptake of complement-opsonized NC, whereas CR4, which in mouse is specifically expressed by DC, played no role. Further, a minor B cell subpopulation (B-1), which is important for first-line pathogen responses, and co-expressed CR1/2 and CR3, in general, engaged NC to a much higher extent than normal B cells. Here, we identified CR-1/2 as necessary for binding of complement-opsonized NC, whereas CR3 was dispensable. Interestingly, the binding of complement-opsonized NC to both DC and B-1 cells affected the expression of activation markers. Our findings may have important implications for the design of nano-vaccines against infectious diseases, which codeliver pathogen-specific protein antigen and adjuvant, aimed to induce a broad adaptive cellular and humoral immune response by inducing cytotoxic T lymphocytes that kill infected cells and pathogen-neutralizing antibodies, respectively. Decoration of nano-vaccines either with carbohydrates to trigger complement activation in vivo or with active complement may result in concomitant targeting of DC and B cells and thereby may strongly enhance the extent of dual cellular/humoral immune responses
Interleukin-1 beta - a friend or foe in malignancies?
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development
Nanostructured Lipid Carriers Loaded with Dexamethasone Prevent Inflammatory Responses in Primary Non-Parenchymal Liver Cells
Liver inflammation represents a major clinical problem in a wide range of pathologies. Among the strategies to prevent liver failure, dexamethasone (DXM) has been widely used to suppress inflammatory responses. The use of nanocarriers for encapsulation and sustained release of glucocorticoids to liver cells could provide a solution to prevent severe side effects associated with systemic delivery as the conventional treatment regime. Here we describe a nanostructured lipid carrier developed to efficiently encapsulate and release DXM. This nano-formulation proved to be stable over time, did not interact in vitro with plasma opsonins, and was well tolerated by primary non-parenchymal liver cells (NPCs). Released DXM preserved its pharmacological activity, as evidenced by inducing robust anti-inflammatory responses in NPCs. Taken together, nanostructured lipid carriers may constitute a reliable platform for the delivery of DXM to treat pathologies associated with chronic liver inflammation.Fil: Medina Montano, Carolina. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Rivero Berti, Ignacio. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Gambaro, RocÃo Celeste. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Limeres, MarÃa José. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Svensson, Malin. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Padula, Gisel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Chain, Cecilia Yamil. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas; ArgentinaFil: Cisneros, José Sebastián. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquÃmicas Teóricas y Aplicadas; ArgentinaFil: Castro, Guillermo Raul. Laboratorio Max Planck de Biologia Estructural, Quimica y Biofisica Molecular de Rosario ; Centro de Estudios Interdisciplinarios ; Universidad Nacional de Rosario; . Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Grabbe, Stephan. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Bros, Matthias. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Gehring, Stephan. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Islan, German Abel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; ArgentinaFil: Cacicedo, Maximiliano Luis. Johannes Gutenberg Universitat Mainz; Alemania. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Fermentaciones Industriales. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Fermentaciones Industriales; Argentin
Protease- and cell type–specific activation of protease-activated receptor 2 in cutaneous inflammation
Background: Protease-activated receptor 2 (PAR2) signaling controls skin barrier
function and inflammation, but the roles of immune cells and PAR2-activating pro teases in cutaneous diseases are poorly understood.
Objective: To dissect PAR2 signaling contributions to skin inflammation with new ge netic and pharmacological tools.
Methods/Results: We found markedly increased numbers of PAR2+ infiltrating my eloid cells in skin lesions of allergic contact dermatitis (ACD) patients and in the skin
of contact hypersensitivity (CHS) in mice, a murine ACD model for T cell–mediated
allergic skin inflammation. Cell type–specific deletion of PAR2 in myeloid immune cells
as well as mutation-induced complete PAR2 cleavage insensitivity significantly re duced skin inflammation and hapten-specific Tc1/Th1 cell response. Pharmacological
approaches identified individual proteases involved in PAR2 cleavage and demon strated a pivotal role of tissue factor (TF) and coagulation factor Xa (FXa) as upstream
activators of PAR2 in both the induction and effector phase of CHS. PAR2 mutant
mouse strains with differential cleavage sensitivity for FXa versus skin epithelial cell–expressed proteases furthermore uncovered a time-dependent regulation of
CHS development with an important function of FXa-induced PAR2 activation during
the late phase of skin inflammation.
Conclusions: Myeloid cells and the TF–FXa–PAR2 axis are key mediators and poten tial therapeutic targets in inflammatory skin disease
Selective degradation of mutant FMS-like tyrosine kinase-3 requires BIM-dependent depletion of heat shock proteins.
Internal tandem duplications in the FMS-like tyrosine kinase-3 (FLT3-ITD) are common mutations in acute myeloid leukemia (AML). Proteolysis-targeting chimeras (PROTACs) that induce proteasomal degradation of mutated FLT3 emerge as innovative pharmacological approach. Molecular mechanisms that control targeted proteolysis beyond the ubiquitin-proteasome-system are undefined and PROTACs are the only known type of FLT3 degraders. We report that the von-Hippel-Lindau ubiquitin-ligase based FLT3 PROTAC MA49 (melotinib-49) and the FLT3 hydrophobic tagging molecule MA50 (halotinib-50) reduce endoplasmic reticulum-associated, oncogenic FLT3-ITD but spare FLT3. Nanomolar doses of MA49 and MA50 induce apoptosis of human leukemic cell lines and primary AML blasts with FLT3-ITD (p < 0.05-0.0001), but not of primary hematopoietic stem cells and differentiated immune cells, FLT3 wild-type cells, retinal cells, and c-KIT-dependent cells. In vivo activity of MA49 against FLT3-ITD-positive leukemia cells is verified in a Danio rerio model. The degrader-induced loss of FLT3-ITD involves the pro-apoptotic BH3-only protein BIM and a previously unidentified degrader-induced depletion of protein-folding chaperones. The expression levels of HSP90 and HSP110 correlate with reduced AML patient survival (p < 0.1) and HSP90, HSP110, and BIM are linked to the expression of FLT3 in primary AML cells (p < 0.01). HSP90 suppresses degrader-induced FLT3-ITD elimination and thereby establishes a mechanistically defined feed-back circuit. [Abstract copyright: © 2024. The Author(s).
Differentially Tolerized Mouse Antigen Presenting Cells Share a Common miRNA Signature Including Enhanced mmu-miR-223-3p Expression Which Is Sufficient to Imprint a Protolerogenic State
Dendritic cells (DCs) are pivotal for the induction and maintenance of antigen-specific tolerance and immunity. miRNAs mediate post-transcriptional gene regulation and control in part the differentiation and stimulation-induced immunogenic function of DCs. However, the relevance of miRNAs for the induction and maintenance of a tolerogenic state of DCs has scarcely been highlighted yet. We differentiated mouse bone marrow cells to conventional/myeloid DCs or to tolerogenic antigen presenting cells (APCs) by using a glucocorticoid (dexamethasone) or interleukin-10, and assessed the miRNA expression patterns of unstimulated and LPS-stimulated cell populations by array analysis and QPCR. Differentially tolerized mouse APCs convergingly down-regulated a set of miRNA species at either state of activation as compared with the corresponding control DC population (mmu-miR-9-5p, mmu-miR-9-3p, mmu-miR-155-5p). These miRNAs were also upregulated in control DCs in response to stimulation. In contrast, miRNAs that were convergingly upregulated in both tolerized APC groups at stimulated state (mmu-miR-223-3p, mmu-miR-1224-5p) were downregulated in control DCs in response to stimulation. Overexpression of mmu-miR-223-3p in DCs was sufficient to prevent stimulation-associated acquisition of potent T cell stimulatory capacity. Overexpression of mmu-miR-223-3p in a DC line resulted in attenuated expression of known (Cflar, Rasa1, Ras) mRNA targets of this miRNA species shown to affect pathways that control DC activation. Taken together, we identified sets of miRNAs convergingly regulated in differentially tolerized APCs, which may contribute to imprint stimulation-resistant tolerogenic function as demonstrated for mmu-miR-223-3p. Knowledge of miRNAs with protolerogenic function enables immunotherapeutic approaches aimed to modulate immune responses by regulating miRNA expression
Squaric Ester-Based, pH-Degradable Nanogels:Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators
Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.</p
- …