175 research outputs found

    Advances in the proposed electromagnetic zero-point field theory of inertia

    Get PDF
    A NASA-funded research effort has been underway at the Lockheed Martin Advanced Technology Center in Palo Alto and at California State University in Long Beach to develop and test a recently published theory that Newton's equation of motion can be derived from Maxwell's equations of electrodynamics as applied to the zero-point field (ZPF) of the quantum vacuum. In this ZPF-inertia theory, mass is postulated to be not an intrinsic property of matter but rather a kind of electromagnetic drag force that proves to be acceleration dependent by virtue of the spectral characteristics of the ZPF. The theory proposes that interactions between the ZPF and matter take place at the level of quarks and electrons, hence would account for the mass of a composite neutral particle such as the neutron. An effort to generalize the exploratory study of Haisch, Rueda and Puthoff (1994) into a proper relativistic formulation has been successful. Moreover the principle of equivalence implies that in this view gravitation would also be electromagnetic in origin along the lines proposed by Sakharov (1968). With regard to exotic propulsion we can definitively rule out one speculatively hypothesized mechanism: matter possessing negative inertial mass, a concept originated by Bondi (1957) is shown to be logically impossible. On the other hand, the linked ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of manipulation of inertia and gravitation, since both are postulated to be electromagnetic phenomena. It is hoped that this will someday translate into actual technological potential. A key question is whether the proposed ZPF-matter interactions generating the phenomenon of mass might involve one or more resonances. This is presently under investigation.Comment: Revised version of invited presentation at 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 13-15, 1998, Cleveland, OH, 10 pages, no figure

    Recent Developments in Modeling Heteroepitaxy/Heterogeneous Nucleation by Dynamical Density Functional Theory

    Get PDF
    Crystallization of supersaturated liquids usually starts by epitaxial growth or by heterogeneous nucleation on foreign surfaces. Herein, we review recent advances made in modeling heteroepitaxy and heterogeneous nucleation on flat/modulated surfaces and nanoparticles within the framework of a simple dynamical density functional theory, known as the phase-field crystal model. It will be shown that the contact angle and the nucleation barrier are nonmonotonous functions of the lattice mismatch between the substrate and the crystalline phase. In continuous cooling studies for substrates with lattice mismatch, we recover qualitatively the Matthews–Blakeslee mechanism of stress release via the misfit dislocations. The simulations performed for particle-induced freezing will be confronted with recent analytical results, exploring thus the validity range of the latter. It will be demonstrated that time-dependent studies are essential, as investigations based on equilibrium properties often cannot identify the preferred nucleation pathways. Modeling of these phenomena is essential for designing materials on the basis of controlled nucleation and/or nano-patterning

    Observations on the changing language of accounting

    Get PDF
    The meaning of words can change over time. In addition, new words may enter a language, sometimes replacing other words. This article extends prior literature on language change in accounting by drawing to a larger extent on theories from linguistics, and by placing greater emphasis on mechanisms of and motivations for change. Particular emphasis is placed on the need to verbalize new concepts, and sociocultural change. The latter is illustrated with examples from the development of accounting as an occupational interest group, and the adoption of Anglo-American accounting terminology and culture. The article concludes that language change in accounting, including transmission between languages and cultures, can inform accounting historians about the transfer of technical developments, as well as about socio-economic, political or ideological processes, power relationships, and the importance of terminology in jurisdictional disputes

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Trends in the incidence of dementia: design and methods in the Alzheimer Cohorts Consortium

    Get PDF
    Several studies have reported a decline in incidence of dementia which may have large implications for the projected burden of disease, and provide important guidance to preventive efforts. However, reports are conflicting or inconclusive with regard to the impact of gender and education with underlying causes of a presumed declining trend remaining largely unidentified. The Alzheimer Cohorts Consortium aggregates data from nine international population-based cohorts to determine changes in the incidence of dementia since 1990. We will employ Poisson regression models to calculate incidence rates in each cohort and Cox proportional hazard regression to compare 5-year cumulative hazards across study-specific epochs. Finally, we will meta-analyse changes per decade across cohorts, and repeat all analysis stratified by sex, education and APOE genotype. In all cohorts combined, there are data on almost 69,000 people at risk of dementia with the range of follow-up years between 2 and 27. The average age at baseline is similar across cohorts ranging between 72 and 77. Uniting a wide range of disease-specific and methodological expertise in research teams, the first analyses within the Alzheimer Cohorts Consortium are underway to tackle outstanding challenges in the assessment of time-trends in dementia occurrence

    Twenty-seven-year time trends in dementia incidence in Europe and the United States: The Alzheimer Cohorts Consortium

    Get PDF
    OBJECTIVE: To determine changes in the incidence of dementia between 1988 and 2015. METHODS: This analysis was performed in aggregated data from individuals >65 years of age in 7 population-based cohort studies in the United States and Europe from the Alzheimer Cohort Consortium. First, we calculated age- and sex-specific incidence rates for all-cause dementia, and then defined nonoverlapping 5-year epochs within each study to determine trends in incidence. Estimates of change per 10-year interval were pooled and results are presented combined and stratified by sex. RESULTS: Of 49,202 individuals, 4,253 (8.6%) developed dementia. The incidence rate of dementia increased with age, similarly for women and men, ranging from about 4 per 1,000 person-years in individuals aged 65-69 years to 65 per 1,000 person-years for those aged 85-89 years. The incidence rate of dementia declined by 13% per calendar decade (95% confidence interval [CI], 7%-19%), consistently across studies, and somewhat more pronouncedly in men than in women (24% [95% CI 14%-32%] vs 8% [0%-15%]). CONCLUSION: The incidence rate of dementia in Europe and North America has declined by 13% per decade over the past 25 years, consistently across studies. Incidence is similar for men and women, although declines were somewhat more profound in men. These observations call for sustained efforts to finding the causes for this decline, as well as determining their validity in geographically and ethnically diverse populations

    Oral versus intravenous antibiotics for bone and joint infection

    Get PDF
    BACKGROUND The management of complex orthopedic infections usually includes a prolonged course of intravenous antibiotic agents. We investigated whether oral antibiotic therapy is noninferior to intravenous antibiotic therapy for this indication. METHODS We enrolled adults who were being treated for bone or joint infection at 26 U.K. centers. Within 7 days after surgery (or, if the infection was being managed without surgery, within 7 days after the start of antibiotic treatment), participants were randomly assigned to receive either intravenous or oral antibiotics to complete the first 6 weeks of therapy. Follow-on oral antibiotics were permitted in both groups. The primary end point was definitive treatment failure within 1 year after randomization. In the analysis of the risk of the primary end point, the noninferiority margin was 7.5 percentage points. RESULTS Among the 1054 participants (527 in each group), end-point data were available for 1015 (96.3%). Treatment failure occurred in 74 of 506 participants (14.6%) in the intravenous group and 67 of 509 participants (13.2%) in the oral group. Missing end-point data (39 participants, 3.7%) were imputed. The intention-to-treat analysis showed a difference in the risk of definitive treatment failure (oral group vs. intravenous group) of −1.4 percentage points (90% confidence interval [CI], −4.9 to 2.2; 95% CI, −5.6 to 2.9), indicating noninferiority. Complete-case, per-protocol, and sensitivity analyses supported this result. The between-group difference in the incidence of serious adverse events was not significant (146 of 527 participants [27.7%] in the intravenous group and 138 of 527 [26.2%] in the oral group; P=0.58). Catheter complications, analyzed as a secondary end point, were more common in the intravenous group (9.4% vs. 1.0%). CONCLUSIONS Oral antibiotic therapy was noninferior to intravenous antibiotic therapy when used during the first 6 weeks for complex orthopedic infection, as assessed by treatment failure at 1 year. (Funded by the National Institute for Health Research; OVIVA Current Controlled Trials number, ISRCTN91566927. opens in new tab.
    corecore