15,596 research outputs found
Flight data display studies for real time computer flight evaluation Final report
Real time displays for in-flight monitoring of Saturn launch vehicle
Localization and its consequences for quantum walk algorithms and quantum communication
The exponential speed-up of quantum walks on certain graphs, relative to
classical particles diffusing on the same graph, is a striking observation. It
has suggested the possibility of new fast quantum algorithms. We point out here
that quantum mechanics can also lead, through the phenomenon of localization,
to exponential suppression of motion on these graphs (even in the absence of
decoherence). In fact, for physical embodiments of graphs, this will be the
generic behaviour. It also has implications for proposals for using spin
networks, including spin chains, as quantum communication channels.Comment: 4 pages, 1 eps figure. Updated references and cosmetic changes for v
Shor's quantum factoring algorithm on a photonic chip
Shor's quantum factoring algorithm finds the prime factors of a large number
exponentially faster than any other known method a task that lies at the heart
of modern information security, particularly on the internet. This algorithm
requires a quantum computer a device which harnesses the `massive parallelism'
afforded by quantum superposition and entanglement of quantum bits (or qubits).
We report the demonstration of a compiled version of Shor's algorithm on an
integrated waveguide silica-on-silicon chip that guides four single-photon
qubits through the computation to factor 15.Comment: 2 pages, 1 figur
Coherent Time Evolution and Boundary Conditions of Two-Photon Quantum Walks
Multi-photon quantum walks in integrated optics are an attractive controlled
quantum system, that can mimic less readily accessible quantum systems and
exhibit behavior that cannot in general be accurately replicated by classical
light without an exponential overhead in resources. The ability to observe time
evolution of such systems is important for characterising multi-particle
quantum dynamics---notably this includes the effects of boundary conditions for
walks in spaces of finite size. Here we demonstrate the coherent evolution of
quantum walks of two indistinguishable photons using planar arrays of 21
evanescently coupled waveguides fabricated in silicon oxynitride technology. We
compare three time evolutions, that follow closely a model assuming unitary
evolution, corresponding to three different lengths of the array---in each case
we observe quantum interference features that violate classical predictions.
The longest array includes reflecting boundary conditions.Comment: 7 pages,7 figure
Discovery of the Fomalhaut C debris disc
Fomalhaut is one of the most interesting and well studied nearby stars,
hosting at least one planet, a spectacular debris ring, and two distant
low-mass stellar companions (TW PsA and LP 876-10, a.k.a. Fomalhaut B & C). We
observed both companions with Herschel, and while no disc was detected around
the secondary, TW PsA, we have discovered the second debris disc in the
Fomalhaut system, around LP 876-10. This detection is only the second case of
two debris discs seen in a multiple system, both of which are relatively wide
(3000 AU for HD 223352/40 and 158 kAU [0.77 pc] for Fomalhaut/LP
876-10). The disc is cool (24K) and relatively bright, with a fractional
luminosity , and represents the rare
observation of a debris disc around an M dwarf. Further work should attempt to
find if the presence of two discs in the Fomalhaut system is coincidental,
perhaps simply due to the relatively young system age of 440 Myr, or if the
stellar components have dynamically interacted and the system is even more
complex than it currently appears.Comment: Published in MNRAS Letters. Merry Xma
Passive, broadband and low-frequency suppression of laser amplitude noise to the shot-noise limit using hollow-core fibre
We use hollow-core fibre to preserve the spectrum and temporal profile of
picosecond laser pulses in CBD to suppress 2.6 dB of amplitude noise at MHz
noise frequencies, to within 0.01 dB of the shot-noise limit. We provide an
enhanced version of the CBD scheme that concatenates circuits to suppress over
multiple frequencies and over broad frequency ranges --- we perform a first
demonstration that reduces total excess amplitude noise, between 2 - 6 MHz, by
85%. These demonstrations enable passive, broad-band, all-guided fibre laser
technology operating at the shot-noise limit.Comment: 8 pages, 8 figure
The Central Laser Facility at the Pierre Auger Observatory
The Central Laser Facility is located near the middle of the Pierre Auger
Observatory in Argentina. It features a UV laser and optics that direct a beam
of calibrated pulsed light into the sky. Light scattered from this beam
produces tracks in the Auger optical detectors which normally record nitrogen
fluorescence tracks from cosmic ray air showers. The Central Laser Facility
provides a "test beam" to investigate properties of the atmosphere and the
fluorescence detectors. The laser can send light via optical fiber
simultaneously to the nearest surface detector tank for hybrid timing analyses.
We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
Interpreting the extended emission around three nearby debris disc host stars
Cool debris discs are a relic of the planetesimal formation process around
their host star, analogous to the solar system's Edgeworth-Kuiper belt. As
such, they can be used as a proxy to probe the origin and formation of
planetary systems like our own. The Herschel Open Time Key Programmes "DUst
around NEarby Stars" (DUNES) and "Disc Emission via a Bias-free Reconnaissance
in the Infrared/Submillimetre" (DEBRIS) observed many nearby, sun-like stars at
far-infrared wavelengths seeking to detect and characterize the emission from
their circumstellar dust. Excess emission attributable to the presence of dust
was identified from around 20% of stars. Herschel's high angular
resolution ( 7" FWHM at 100 m) provided the capacity for resolving
debris belts around nearby stars with radial extents comparable to the solar
system (50 to 100 au). As part of the DUNES and DEBRIS surveys, we obtained
observations of three debris disc stars, HIP 22263 (HD 30495), HIP 62207 (HD
110897), and HIP 72848 (HD 131511), at far-infrared wavelengths with the
Herschel PACS instrument. Combining these new images and photometry with
ancilliary data from the literature, we undertook simultaneous multi-wavelength
modelling of the discs' radial profiles and spectral energy distributions using
three different methodologies: single annulus, modified black body, and a
radiative transfer code. We present the first far-infrared spatially resolved
images of these discs and new single-component debris disc models. We
characterize the capacity of the models to reproduce the disc parameters based
on marginally resolved emission through analysis of two sets of simulated
systems (based on the HIP 22263 and HIP 62207 data) with the noise levels
typical of the Herschel images. We find that the input parameter values are
recovered well at noise levels attained in the observations presented here.Comment: 13 pages, 5 figures, 5 tables, accepted for publication in A&
Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction
In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks. However, successfully learning these features requires a large amount of manually annotated data, which is expensive to acquire and limited by the available resources of expert image analysts. Therefore, unsupervised, weakly-supervised and self-supervised feature learning techniques receive a lot of attention, which aim to utilise the vast amount of available data, while at the same time avoid or substantially reduce the effort of manual annotation. In this paper, we propose a novel way for training a cardiac MR image segmentation network, in which features are learnt in a self-supervised manner by predicting anatomical positions. The anatomical positions serve as a supervisory signal and do not require extra manual annotation. We demonstrate that this seemingly simple task provides a strong signal for feature learning and with self-supervised learning, we achieve a high segmentation accuracy that is better than or comparable to a U-net trained from scratch, especially at a small data setting. When only five annotated subjects are available, the proposed method improves the mean Dice metric from 0.811 to 0.852 for short-axis image segmentation, compared to the baseline U-net
- …