Multi-photon quantum walks in integrated optics are an attractive controlled
quantum system, that can mimic less readily accessible quantum systems and
exhibit behavior that cannot in general be accurately replicated by classical
light without an exponential overhead in resources. The ability to observe time
evolution of such systems is important for characterising multi-particle
quantum dynamics---notably this includes the effects of boundary conditions for
walks in spaces of finite size. Here we demonstrate the coherent evolution of
quantum walks of two indistinguishable photons using planar arrays of 21
evanescently coupled waveguides fabricated in silicon oxynitride technology. We
compare three time evolutions, that follow closely a model assuming unitary
evolution, corresponding to three different lengths of the array---in each case
we observe quantum interference features that violate classical predictions.
The longest array includes reflecting boundary conditions.Comment: 7 pages,7 figure