207 research outputs found

    A First Look at the Auriga-California Giant Molecular Cloud With Herschel and the CSO: Census of the Young Stellar Objects and the Dense Gas

    Get PDF
    We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory (CSO) with the eventual goal of quantifying the star formation and cloud structure in this Giant Molecular Cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160um sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer. We also describe the dust column density and temperature structure derived from our photometric maps. The column density peaks at a few x 10^22 cm^-2 (N_H2) and is distributed in a clear filamentary structure along which nearly all the pre-main-sequence objects are found. We compare the YSO surface density to the gas column density and find a strong non-linear correlation between them. The dust temperature in the densest parts of the filaments drops to ~10K from values ~ 14--15K in the low density parts of the cloud. We also derive the cumulative mass fraction and probability density function of material in the cloud which we compare with similar data on other star-forming clouds.Comment: in press Astrophysical Journal, 201

    Constraining the presence of giant planets in two-belt debris disk systems with VLT/SPHERE direct imaging and dynamical arguments

    Get PDF
    Giant, wide-separation planets often lie in the gap between multiple, distinct rings of circumstellar debris: this is the case for the HR 8799 and HD 95086 systems, and even the solar system where the Asteroid and Kuiper belts enclose the four gas and ice giants. In the case that a debris disk, inferred from an infrared excess in the SED, is best modelled as two distinct temperatures, we infer the presence of two spatially separated rings of debris. Giant planets may well exist between these two belts of debris, and indeed could be responsible for the formation of the gap between these belts. We observe 24 such two-belt systems using the VLT/SPHERE high contrast imager, and interpret our results under the assumption that the gap is indeed formed by one or more giant planets. A theoretical minimum mass for each planet can then be calculated, based on the predicted dynamical timescales to clear debris. The typical dynamical lower limit is ˜0.2MJ in this work, and in some cases exceeds 1MJ. Direct imaging data, meanwhile, is typically sensitive to planets down to ˜3.6MJ at 1", and 1.7MJ in the best case. Together, these two limits tightly constrain the possible planetary systems present around each target, many of which will be detectable with the next generation of high-contrast imagers

    Second messenger/signal transduction pathways in major mood disorders: Moving from membrane to mechanism of action, part II: bipolar disorder

    Get PDF
    The etiopathogenesis and treatment of major mood disorders have historically focused on modulation of monoaminergic (serotonin, norepinephrine, dopamine) and amino acid [γ-aminobutyric acid (GABA), glutamate] receptors at the plasma membrane. Although the activation and inhibition of these receptors acutely alter local neurotransmitter levels, their neuropsychiatric effects are not immediately observed. This time lag implicates intracellular neuroplasticity as primary in the mechanism of action of antidepressants and mood stabilizers. The modulation of intracellular second messenger/signal transduction cascades affects neurotrophic pathways that are both necessary and sufficient for monoaminergic and amino acid–based treatments. In this review, we will discuss the evidence in support of intracellular mediators in the pathophysiology and treatment of preclinical models of despair and major depressive disorder (MDD). More specifically, we will focus on the following pathways: cAMP/PKA/CREB, neurotrophin-mediated (MAPK and others), p11, Wnt/Fz/Dvl/GSK3β, and NFκB/ΔFosB. We will also discuss recent discoveries with rapidly acting antidepressants, which activate the mammalian target of rapamycin (mTOR) and release of inhibition on local translation via elongation factor stimulation. Throughout this discourse, we will highlight potential intracellular targets for therapeutic intervention. Finally, future clinical implications are discussed

    The Luminosities of Protostars in the Spitzer c2d and Gould Belt Legacy Clouds

    Get PDF
    Motivated by the long-standing "luminosity problem" in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate Lbol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 Lsun - 69 Lsun, and has a mean and median of 4.3 Lsun and 1.3 Lsun, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (Lbol < 0.5 Lsun) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 um < wavelength < 850 um) and have Lbol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35% - 40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased dataset should aid such future work.Comment: Accepted for publication in AJ. 21 pages, 10 figures, 4 table

    Judy Reservoir Monitoring Project 2010 Final Report

    Get PDF
    The purpose of this study was to identify and count the phytoplankton in water samples collected from Judy Reservoir, and measure other standard biological and chemical parameters. Water quality data and algae counts have been collected on a weekly basis since October 2006; annual data summaries were sent to the Skagit Public Utility District No. 1 in 2007 and 2008. (rev. Feb 18, 2010

    Young Stellar Objects in the Gould Belt

    Get PDF
    We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope "cores to disks" (c2d) and "Gould Belt" (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the Gould Belt. We compile extinction corrected SEDs for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. We find that 326 (11%), 210 (7%), 1248 (42%), and 1182 (40%) are classified as Class 0+I, Flat-spectrum, Class II, and Class III, respectively, and show that the Class III sample suffers from an overall contamination rate by background AGB stars between 25% and 90%. Adopting standard assumptions, we derive durations of 0.40-0.78 Myr for Class 0+I YSOs and 0.26-0.50 Myr for Flat-spectrum YSOs, where the ranges encompass uncertainties in the adopted assumptions. Including information from (sub)millimeter wavelengths, one-third of the Class 0+I sample is classified as Class 0, leading to durations of 0.13-0.26 Myr (Class 0) and 0.27-0.52 Myr (Class I). We revisit infrared color-color diagrams used in the literature to classify YSOs and propose minor revisions to classification boundaries in these diagrams. Finally, we show that the bolometric temperature is a poor discriminator between Class II and Class III YSOs.Comment: Accepted for publication in ApJS. 29 pages, 11 figures, 14 tables, 4 appendices. Full versions of data tables (to be published in machine-readable format by ApJS) available at the end of the latex source cod

    The Spitzer Survey of Interstellar Clouds in the Gould Belt. VI. The Auriga-California Molecular Cloud observed with IRAC and MIPS

    Full text link
    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micron observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 sq-deg with IRAC and 10.47 sq-deg with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHalpha 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.Comment: (30 pages, 17 figures (2 multipage figures), accepted for publication in ApJ

    Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    Get PDF
    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by 50billion,the50 billion, the 200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative environment that leverages technology and scientific expertise from DOE, Pacific Northwest National Laboratory, CH2M HILL Plateau Remediation Company, and the broad scientific research community. As project manager for the DVZ-AFRI, I have had the privilege this past year to team with creative, talented members of the scientific community nationwide to develop effective long-term solutions to address deep vadose zone contamination. This report highlights how the DVZ-AFRI project team is delivering results by achieving significant programmatic accomplishments, and developing and field-testing transformational technologies to address the nation's most pressing groundwater and vadose zone contamination problems
    corecore