21,715 research outputs found

    Analysis of holograms of reacting sprays Final report

    Get PDF
    Holograms of reacting and nonreacting droplet sprays for data reductio

    Road User Charging – Pricing Structures.

    No full text
    This project considers the extent to which the public could cope with complex price or tariff structures such as those that might be considered in the context of a national congestion pricing scheme. The key elements of the brief were: ‱ to review existing studies of road pricing schemes to assess what information and evidence already exists on the key issues; ‱ to identify what can be learned about pricing structures from other transport modes and other industries and in particular what issues and conclusions might be transferable; ‱ to improve the general understanding of the relationship between information and people’s ability to respond; and ‱ to recommend what further research would be most valuable to fill evidence gaps and enable conclusions to be drawn about an effective structure

    Dusty plasma cavities: probe-induced and natural

    Full text link
    A comprehensive exploration of regional dust evacuation in complex plasma crystals is presented. Voids created in 3D crystals on the International Space Station have provided a rich foundation for experiments, but cavities in dust crystals formed in ground-based experiments have not received as much attention. Inside a modified GEC RF cell, a powered vertical probe was used to clear the central area of a dust crystal, producing a cavity with high cylindrical symmetry. Cavities generated by three mechanisms are examined. First, repulsion of micrometer-sized particles by a negatively charged probe is investigated. A model of this effect developed for a DC plasma is modified and applied to explain new experimental data in RF plasma. Second, the formation of natural cavities is surveyed; a radial ion drag proposed to occur due to a curved sheath is considered in conjunction with thermophoresis and a flattened confinement potential above the center of the electrode. Finally, cavity formation unexpectedly occurs upon increasing the probe potential above the plasma floating potential. The cavities produced by these methods appear similar, but each are shown to be facilitated by fundamentally different processes.Comment: 10 pages, 12 figure

    In situ measurement shows ocean boundary layer physical processes control catastrophic global warming.

    Get PDF
    The infrared greenhouse gas heat trap at the top of the atmosphere controls anthropogenic global warming (AGW) heat balance. Processes at the top of the ocean similarly control the 93% of AGW in the oceans. The tropics are a global year-round ocean heat source. Heat is transported in the ocean by sinking brine from tropical evaporation and polar freezing. Buoyant freshwater and ice barriers limit heat loss from the surface layer. The almost completely unstudied ocean surface skin is critically important to understanding global warming and climate change processes. Studies to date have concentrated on atmospheric warming mainly from land-air data. In this paper we present the first hourly meridional 3m and surface observations in the equatorial Pacific from Tahiti to Hawaii for direct measurement of evaporation and ocean boundary layer heat trapping. We relate this to poleward heat and freshwater transport and ocean warming moderation by basal icemelt of floating ice explored in a second paper [1]. We show heat sequestration below 3m in the hypersaline (>35.5°) southern hemisphere (SH) is limited to ~6M Jm -2 day-1 but evaporation is 7.3mmm-2day--1, at salinity ~36.4° and temperature >28ÂșC. In the northern hemisphere (NH) tropics the corresponding figures are ~12 MJm-2day-1 and ~4.5mmm -2day--1. Equatorial upwelling and the 50m deep Bering Strait limit buoyant surface outflow from the North Pacific. We found pairs of counter-rotating vertical meridional tropical cells (MTCs), ~300-1200km wide, ~100m deep form separate SH and NH systems with little cross-equatorial flux. Counter-rotating Lagrangian wind-driven gyres transport heat and freshwater polewards in seasonally and tidally moderated stratified surface waters. The zonal geostrophic balance is maintained by the Equatorial Undercurrent (EUC) with an eastbound core ~140cms-1 and density ~25.0 at 50-150m. Global warming and polar icemelt has been underestimated from wrong assumptions of the processes in the top 3m of oceans. These are the unverified beliefs that ocean evaporation depends on windspeed and relative humidity that the ocean is well mixed to 10m depths, and by neglect of water density determined by both salinity and temperature. Temperature measurement to±0.01ÂșC is required to account for the 3000x greater volumetric heat capacity of seawater to air (3.9x106: 1.3x103Jm-3°C-1). Most SST data are to atmospheric standards (>±0.5°C). Evaporation depends only on temperature (Clausius-Clapeyron). Heat sequestration depends on the buoyant surface layer processes and underlying density gradient. Eleven interconnected counter-rotating Lagrangian wind-driven surface gyres form a global circulation system that carries buoyant surface water masses at speeds much higher than Eulerian geostrophic currents. Polar ice may erode year-round from basal melting from warm subsurface water.This explains contrasting Arctic/Antarctic warming impacts. We suggest many more in situ 3m timeseries especially meridional ones are needed to confirm our findings. In a second paper on centennial daily surface timeseries we show ocean surface warming trend rate post about 1976-1986 is ~0.037ÂșCyr-1, i.e. >ÂșC in 20 years [1]. We suggest global warming research be concentrated on the top of the ocean through multidisciplinary timeseries fieldwork verification, monitoring and modeling. This would best be conducted through a cost-efficient dynamic adaptive scientific management for rapid determination of mitigation and adaptation strategies. Reducing troposphere greenhouse gases can only reduce warming. Mitigation maybe possible through heat energy extraction from geothermal, ocean, tidal and solar sources

    Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: randomised, crossover, double blind study

    Get PDF
    <b>Objective</b>: To compare the analgesic efficacy and side effects of the synthetic cannabinoid nabilone with those of the weak opioid dihydrocodeine for chronic neuropathic pain. <b>Design</b>: Randomised, double blind, crossover trial of 14 weeks’ duration comparing dihydrocodeine and nabilone. <b>Setting</b>: Outpatient units of three hospitals in the United Kingdom. <b>Participants</b>: 96 patients with chronic neuropathic pain, aged 23-84 years. <b>Main outcome measures</b>: The primary outcome was difference between nabilone and dihydrocodeine in pain, as measured by the mean visual analogue score computed over the last 2 weeks of each treatment period. Secondary outcomes were changes in mood, quality of life, sleep, and psychometric function. Side effects were measured by a questionnaire. <b>Intervention</b>: Patients received a maximum daily dose of 240 mg dihydrocodeine or 2 mg nabilone at the end of each escalating treatment period of 6 weeks. Treatment periods were separated by a 2 week washout period. <b>Results</b>: Mean baseline visual analogue score was 69.6 mm (range 29.4-95.2) on a 0-100 mm scale. 73 patients were included in the available case analysis and 64 patients in the per protocol analysis. The mean score was 6.0 mm longer for nabilone than for dihydrocodeine (95% confidence interval 1.4 to 10.5) in the available case analysis and 5.6 mm (10.3 to 0.8) in the per protocol analysis. Side effects were more frequent with nabilone. <b>Conclusion</b>: Dihydrocodeine provided better pain relief than the synthetic cannabinoid nabilone and had slightly fewer side effects, although no major adverse events occurred for either drug

    Modelling security properties in a grid-based operating system with anti-goals

    Get PDF

    Dusty Plasma Correlation Function Experiment

    Full text link
    Dust particles immersed within a plasma environment, such as those in protostellar clouds, planetary rings or cometary environments, will acquire an electric charge. If the ratio of the inter-particle potential energy to the average kinetic energy is high enough the particles will form either a "liquid" structure with short-range ordering or a crystalline structure with long range ordering. Many experiments have been conducted over the past several years on such colloidal plasmas to discover the nature of the crystals formed, but more work is needed to fully understand these complex colloidal systems. Most previous experiments have employed monodisperse spheres to form Coulomb crystals. However, in nature (as well as in most plasma processing environments) the distribution of particle sizes is more randomized and disperse. This paper reports experiments which were carried out in a GEC rf reference cell modified for use as a dusty plasma system, using varying sizes of particles to determine the manner in which the correlation function depends upon the overall dust grain size distribution. (The correlation function determines the overall crystalline structure of the lattice.) Two dimensional plasma crystals were formed of assorted glass spheres with specific size distributions in an argon plasma. Using various optical techniques, the pair correlation function was determined and compared to those calculated numerically.Comment: 6 pages, Presented at COSPAR '0
    • 

    corecore