
Modelling Security Properties in a Grid-based Operating System with
Anti-Goals

Alvaro Arenas Benjamin Aziz Juan Bicarregui Brian Matthews
Erica Y. Yang

STFC e-Science Centre, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
{a.e.arenas, b.aziz, j.c.bicarregui, b.m.matthews, y.yang}@rl.ac.uk

Abstract

In this paper, we discuss the use of formal requirements-
engineering techniques in capturing security requirements
for a Grid-based operating system. We use KAOS goal
model to represent two security goals for Grid systems,
namely authorisation and single-sign on authentication. We
apply goal-refinement to derive security requirements for
these two security goals and we develop a model of anti-
goals and show how system vulnerabilities and threats to
the security goals can arise from such anti-models.

1 INTRODUCTION

Goal-driven approaches focus on why systems are
constructed, providing the motivation and rationale for
justifying software requirements. Examples of goal-
oriented requirements methodologies include KAOS [11]
and i∗/Tropos [2], among others. A goal is an objective that
the system under development should achieve; this system
includes the software as well as its environment.

This paper presents some fragments of the requirements
engineering (RE) work for XtreemOS [8], a grid-based
extension of the Linux operating system. We follow the
KAOS approach [11], a goal-oriented RE methodology that
includes activities such as the identification of the goals to
be achieved by the envisioned system, the refinement of
such goals and their operationalisation into specifications of
services and constraints, and the assignment of responsibili-
ties for the resulting requirements to agents such as humans,
devices and software.

We describe the modelling of two key properties for
XtreemOS, namely authorisation and single-sign on authen-
tication, concentrating only on the goal and anti-goal mod-
els due to space limitation. We use goal-refinement tech-
niques to derive security requirements for each of these
properties. The anti-goal models are built to identify po-

tential threats and vulnerabilities to the security properties.
The structure of the paper is as follows. Section 2 intro-

duces the main characteristics of XtreemOS and Section 3
briefly describes the KAOS methodology. The core of the
paper are Sections 4 and 5, where the goal and anti-goal
models of the authorisation and single-sign on authentica-
tion requirements in XtreemOS are defined. Section 6 re-
lates our work with other approaches. Finally, Section 7
concludes the paper and highlights future work.

2 XtreemOS: A Grid-based OS

XtreemOS 1 is a European project which has the ob-
jective to develop an open source Grid operating system
(named XtreemOS) which supports scientific and commer-
cial Grid applications. The goal is to provide an abstract
interface to its underlying distributed physical resources, as
a traditional operating system does for a single computer.
The approach being investigated is to base XtreemOS on
the existing Linux operating system. A set of system ser-
vices, extending those found in the traditional Linux, will
provide users with fully integrated Grid capabilities.

A key feature of XtreemOS is native support for Virtual
Organisations (VOs), where a VO can be seen as a tem-
porary or permanent coalition of geographically dispersed
entities (individuals, groups, organisational units or entire
organisations) that pool resources, capabilities and informa-
tion to achieve common objectives.

XtreemOS consists of a wide range of Grid services (e.g.
integrated application execution and data management) run-
ning in use space of Linux and making extensive use of
Linux kernel modules (e.g. Pluggable Authentication Mod-
ule - PAM and Filesystem in Userspace - FUSE) to deliver
the Grid capabilities. Although, in general terms, many se-
curity requirements (e.g. authorisation and authentication)
have been well studied in the Grid security community, it

1http://www.xtreemos.eu/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29580264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


remains to be shown how these conventional security re-
quirements can be met in this new setting.

The two selective security properties (i.e. authorisation
and single-sign on authentication) are fundamental to Grid
systems, and are central to the majority of our applications.
They have been analysed informally in the XtreemOS se-
curity requirement study [14]. The work described in this
paper, arises from the need to thoroughly and rigorously
understand the security requirements of the critical compo-
nents of XtreemOS and of the critical interactions among
system components. By performing this task, we aim to
highlight and ultimately eliminate the presence of well-
known security vulnerabilities from our design and imple-
mentation. We also expect to provide feedback to system
designers along the security design process and use the out-
come from this analysis to create test cases for XtreemOS.

3 The KAOS Methodology

KAOS is a generic methodology that is based on the
capture, structuring and precise formulation of the system
goals [11]. A goal is prescriptive description of system
properties, formulated in non-operational terms. A system
includes not only the software to be developed but also its
environment. Goals are refined and operationalised in a
top-down manner as the system is designed or bottom up
approach while re-engineering existing systems. The ap-
proach also supports adverse environments, composed of
possibly malicious external agents trying to undermine the
system goal rather than to collaborate in the goal fulfillment.
As a Grid system is typically composed of a large number
of nodes interacting in an open and possibly adverse envi-
ronment, this approach fits our needs well.

A KAOS model is composed of a number of sub-models.
The goal model captures and structures the assumed and re-
quired properties of a system by formalising a property as a
top-level goal which is then refined to intermediate subgoals
and finally to low-level requirements, which represent sys-
tem goals that can be made operational. The agent model
assigns goals to agents in a realizable way. Discovering the
responsible agents is the criterion to stop a goal-refinement
process. The object model is used to identify the concepts
of the application domain that are relevant with respect to
the requirements and to provide static constraints on the op-
erational systems that will satisfy the requirements. The
object model consists of objects from the stakeholders’ do-
main and objects introduced to express requirements or con-
straints on the operational system. The operation model
details, at state-transition level, the actions an agent has to
perform to reach the goals it is responsible for. Finally, the
anti-goal model captures attacks on the system and how
they are addressed. This model is built in parallel with
the goal-model and helps discover goals that will improve

the robustness of the system, especially against malicious
agents whose aim is to break the goals of the system.

In what follows, we shall concentrate on the use of the
goal model to represent security properties and the use of
the anti-goal model to express certain attacks and vulnera-
bilities undermining these properties. Both goals and anti-
goals are formally modeled using Linear Temporal Logic
(LTL) formulae. In our definitions, we only require a subset
of LTL represented by the 2P and 3P operators, where P
is defined in terms of the logic connectors (∧ ∨ ¬ →↔).
The former states that P has to hold from this point in time
and in all subsequent states, whereas the latter states that
P has to hold at some time in the future. We also write
(P ⇒ Q) to mean 2(P → Q) and (P ⇔ Q) to mean
(P ⇒ Q) ∧ (P ⇐ Q).

Goals may be organized in AND/OR refinement-
abstraction hierarchies, where higher-level goals are in gen-
eral strategic, coarse-grained and involve multiple agents
whereas lower-level goals are in general technical, fine-
grained and involve fewer agents. In such structures, AND-
refinement links relate a goal to a set of sub-goals possibly
conjoined with domain properties or environment assump-
tions; this means that satisfying all subgoals in the refine-
ment is a sufficient condition in the domain for satisfying
the goal. OR-refinement links may relate a goal to a set of
alternative refinements. Goal refinement ends when every
sub-goal is realizable by some individual agent assigned to
it. A requirement is a terminal goal under responsibility of
an agent in the software-to-be. An expectation is a terminal
goal under responsibility of an agent in the environment.

In AND-refinement hierarchies, one needs to show that
completeness and minimality are preserved. Assume that
a goal G is refined to goals G1 . . . Gn, then completeness
is defined as G1 ∧ . . . ∧ Gn ⇒ G whereas minimality
is defined as G ⇒ G1 ∧ . . . ∧ Gn. Completeness states
that when all of G1 . . . Gn subgoals are achieved, then G is
achieved. Hence a goal is completed by the completion of
its subgoals. By contrast, minimality is concerned with the
minimum number of subgoals implied in the achievement
of a higher-level goal. Thus, if any of the subgoals is not
achieved, the goal will not be achieved.

In the anti-goal model [12], the strategy consists in
breaking a security goal by negating its top-level definition
and then expanding the negation by substituting domain-
specific definitions to specific vulnerabilities.

4 Authorisation

In general, authorisation in an operating system is used
to protect the computing resources underlying the operat-
ing system by permitting access to those resource to certain
users with access rights. In a grid-based operating system,



such as XtreemOS, the underlying resources could be grid-
based as well as local.

The requirement to have authorisation in XtreemOS was
based on the requirements to have data storage confiden-
tiality and integrity. These two requirements appeared as
R78 and R80, repsectivley, in the security requirements
for the XtreemOS application scenarios document [14].
The two requirements identify access control as the main
mechanism for ensuring authorisation. Therefore, here we
do not consider other definitions of confidentiality and in-
tegrity, such as the ones based on information flow or non-
interference properties.

Based on the definitions of R78 and R80, only valid prin-
cipals of the Grid are authorised to access data stored on
resources. Principals are defined as being the users, ad-
ministrators or services present in the Grid, whereas data is
defined as being any data stored on the local or grid-based
filesystem, data present in a shared memory or data con-
tained within a license. A valid principal is defined as being
either one of the following: The owner of the data, or a
principal who is a member of a VO and has the access right
issued by the VO as well as being assigned to a task requir-
ing access to the data.

The last condition assumes the principle of least priv-
ilege, which states that principals should obtain no more
than their minimum (access) rights necessary to achieve
their functionality (task). The right issued by the VO can
be either ”read” or ”write”. This will determine whether the
security property modelled is confidentiality or integrity.

4.1 A Goal Model for Authorisation

The goal model of the authorisation property is illus-
trated informally in Figure 1, where circles represent AND-
relations. Before defining the formal goal model for autho-
risation, we introduce a few useful sets and predicates:

• VO: the set of all VOs.

• Data: the set of all data including that which may be
created and used by XtreemOS applications.

• Principal: the set of all principals. Principals may be
users, administrators or Grid services.

• Task: the set of tasks running in a VO. Tasks are usu-
ally assigned to principals in the VO.

• Entity: is the union set VO ∪ Data ∪ Task.

• Credential: The set of all credentials. A credential may
be a password, a certificate or any other mechanism.

• Attribute: The set of all attributes of a credential. This
set includes data ownership, VO membership, task as-
signment and data read and write attributes.

• Right: The set of read and write access rights. Note
that Right ⊂ Attribute.

• owner : Principal×Data → B is a predicate denoting
that a principal owns a dataset.

• member : Principal×VO → B is a predicate denoting
that a principal is a member of a VO.

• assigned : Principal× Task → B is a predicate denot-
ing that a principal is assigned to some task.

• requires : Task × Data → B is a predicate denoting
that a task requires a dataset.

• hasVORights : Principal × Data × VO × Right → B
is a predicate on principals and datasets denoting that
a principal has a right (read or write) to access the
dataset and that the right was issued by some VO.

• binding : Principal×Entity×Attribute×Credential →
B is a predicate on principals and entities denoting that
a principal is bound to the entity by means of some
credential and this binding has the specified attribute.

• issued By : Credential×VO → B is a predicate stating
that a credential is issued by a VO.

Using these sets and predicates, we can define the formal
top-level goal of authorisation as follows:

Goal [Authorisation]
FormalDef ∀p ∈ Principal, d ∈ Data, r ∈ Right :

authorised(p, d, r) ⇔
(owner(p, d) ∨ (∃vo ∈ VO, t ∈
Task : member(p, vo) ∧ hasVORights(p, d, vo, r) ∧
assigned(p, t) ∧ requires(t, d)))

where authorised : Principal × Data × Right → B is a
predicate denoting that a principal is authorised to access
some data with some right (read or write).

Next, we break down the top-level goal in terms of the
following two subgoals:

Goal [Authorisation Safety]
FormalDef ∀p ∈ Principal, d ∈ Data, r ∈ Right :

authorised(p, d, r) ⇒
(owner(p, d) ∨ (∃vo ∈ VO, t ∈
Task : member(p, vo) ∧ hasVORights(p, d, vo, r) ∧
assigned(p, t) ∧ requires(t, d)))

Goal [Authorisation Liveness]
FormalDef ∀p ∈ Principal, d ∈ Data, r ∈ Right :

authorised(p, d, r) ⇐
(owner(p, d) ∨ (∃vo ∈ VO, t ∈
Task : member(p, vo) ∧ hasVORights(p, d, vo, r) ∧
assigned(p, t) ∧ requires(t, d)))



Figure 1. The Goal Model for Authorisation.

The first subgoal can only be true if it is true that the
principal is either the owner or a valid member of a VO.
Therefore, it denotes safety of authorisation through the suf-
ficiency of the right side condition. In the second subgoal,
the left side must be true if the principal is the owner of the
data or a valid VO member for the goal to be true. There-
fore, it denotes liveness of authorisation. It is straightfor-
ward to show that both the above two subgoals are complete
and minimal with respect to the main authorisation goal.

Now, we break down the second subgoal further on to
the following two subgoals:

Goal [Authorisation Liveness Through Ownership]
FormalDef ∀p ∈ Principal, d ∈ Data, r ∈ Right :

authorised(p, d, r) ⇐ owner(p, d)

Goal [Authorisation Liveness Through Membership]
FormalDef ∀p ∈ Principal, d ∈ Data, r ∈ Right :

authorised(p, d, r) ⇐ (∃vo ∈ VO, t ∈
Task : member(p, vo) ∧ hasVORights(p, d, vo, r) ∧
assigned(p, t) ∧ requires(t, d))

Note that r in the first subgoal does not affect the pred-
icate since an owner has exclusive rights over its datasets.
We now give Grid-based domain-specific definitions of the
predicates appearing on the right side of these implications.

Definition [Owner Credential Validated]
FormalDef (∀p ∈ Principal, d ∈

Data) : owner(p, d) ⇔ (∃cr ∈
Credential : binding(p, d, own, cr) ∧ well defined(cr))

Definition [Assignment Credential Validated]
FormalDef (∀p ∈ Principal, t ∈ Task) : assigned(p, t) ⇔
(∃cr ∈ Credential : binding(p, t, assigned, cr))

Definition [Member Credential Validated]

FormalDef (∀p ∈ Principal, vo ∈ VO) : member(p, vo) ⇔
(∃cr ∈ Credential : binding(p, vo, member, cr))

Definition [Rights Credential Validated]
FormalDef (∀p ∈ Principal, d ∈ Data, vo ∈ VO, r ∈

Right) : hasVORights(p, d, vo, r) ⇔ (∃cr ∈
Credential : binding(p, d, r, cr) ∧ issued By(cr, vo))

The last definition may be specialised into the following
two instances using read and write credentials.

Definition [Read Credential Validated]
FormalDef (∀p ∈ Principal, d ∈ Data, vo ∈

VO) : hasVORights(p, d, vo, read) ⇔ (∃cr ∈
Credential : binding(p, d, read, cr) ∧ issued By(cr, vo))

Definition [Write Credential Validated]
FormalDef (∀p ∈ Principal, d ∈ Data, vo ∈

VO) : hasVORights(p, d, vo, write) ⇔ (∃cr ∈
Credential : binding(p, d, write, cr) ∧ issued By(cr, vo))

In addition to the above definitions, we state the well-
definedness of ownership credentials as follows:

Definition [Credential Well-Definedness]
FormalDef ∀cr ∈ Credential :

well defined(cr) ⇔ (∀p, p′ ∈ Principal, d ∈ Data :
binding(p, d, own, cr) ∧ binding(p′, d, own, cr) ⇒ p = p′)

The requirement essentially states that a credential can-
not refer to more than one principal. An example of this
requirement is that a certificate, which has a unique serial
number, must refer to only one principal. The public key of
the principal contained in the certificate represents the data
to which the principal is bound.



Figure 2. The Anti-Goal Model for Authorisation.

4.2 An Authorisation Anti-Goal Model

Our strategy in deriving system vulnerabilities is based
on the idea of deriving anti-goals from their corresponding
goal definitions by negating those definitions. In fact, it is
sufficient to negate low-level subgoals, since by minimality,
this will ensure that the top-level goal is negated and hence
the property is breached. After that, domain-specific defi-
nitions are used to expand the anti-goals in order to obtain
domain-specific vulnerabilities. The anti-goal model for the
breach of authorisation is shown in Figure 2, where multiple
arrows leading to the same goal represent OR-relations.

To obtain the formal model, we start by negating the
”Authorisation Safety”, ”Authorisation Liveness Through
Ownership” and ”Authorisation Liveness Through Mem-
bership” subgoals, as follows:

AntiGoal [Authorisation Safety Breach]
FormalDef ∃p ∈ Principal, d ∈ Data, r ∈

Right : ♦ (authorised(p, d, r) ∧ ¬(owner(p, d) ∨ (∃vo ∈
VO, t ∈ Task : member(p, vo) ∧ hasVORights(p, d, vo, r) ∧
assigned(p, t) ∧ requires(t, d))))

AntiGoal [Denial of Authorisation to Owners]
FormalDef ∃p ∈ Principal, d ∈ Data, r ∈ Right :
♦ (¬authorised(p, d, r) ∧ owner(p, d))

AntiGoal [Denial of Authorisation to Members]
FormalDef ∃p ∈ Principal, d ∈ Data, r ∈

Right : ♦ (¬authorised(p, d, r) ∧ (∃vo ∈ VO, t ∈
Task : member(p, vo) ∧ hasVORights(p, d, vo, r) ∧
assigned(p, t) ∧ requires(t, d)))

Though interesting, the last two anti-subgoals are out-
side the scope of confidentiality and integrity breaches since
these deal more with the denial of service-like vulnerabili-

ties. Therefore, we only focus on the first anti-subgoal. It is
possible to expand the ”Authorisation Safety Breach” anti-
subgoal by substituting the definitions of the different pred-
icates into the anti-subgoal. However, for lack of space, we
shall consider only the interesting cases of the ownership
and the VO rights predicates. We start with the former:

AntiGoal [Authorisation Safety Breach]
FormalDef ∃p ∈ Principal, d ∈ Data, r ∈

Right,∀cr ∈ Credential, vo ∈ VO, t ∈
Task : ♦ (authorised(p, d, r) ∧ (¬binding(p, d, own, cr) ∨
¬well defined(cr)) ∧ (¬member(p, vo) ∨
¬hasVORights(p, d, vo, r)∨¬assigned(p, t)∨¬requires(t, d)))

This anti-subgoal introduces the predicate of badly de-
fined certificates, ¬well defined(cr). By substituting the
definition of this predicate into the anti-subgoal, we get.

AntiGoal [Masquerading Attack]
FormalDef ∃p, p′ ∈ Principal, d ∈ Data, r ∈ Right,∀cr ∈

Credential, vo ∈ VO, t ∈ Task : ♦ (authorised(p, d, r) ∧
(¬binding(p, d, own, cr) ∨ (binding(p, d, own, cr) ∧

binding(p′, d, own, cr) ∧ ¬(p = p′))) ∧
(¬member(p, vo) ∨ ¬hasVORights(p, d, vo, r) ∨
¬assigned(p, t) ∨ ¬requires(t, d)))

This anti-subgoal models the case in which a creden-
tial refers to two different principals both as owners of the
same dataset. In our opinion, this constitutes a form of mas-
querading attacks in which one principal pretends to be an-
other by presenting information to the system pertaining to
be the other principal. Expanding with the definition of the
lack of VO rights yields the following anti-subgoal:

AntiGoal [Lack of VO Right Credential]
FormalDef ∃p ∈ Principal, d ∈ Data, r ∈

Right,∀cr ∈ Credential, vo ∈ VO, t ∈
Task : ♦ (authorised(p, d, r) ∧ (¬owner(p, d)) ∧
(¬member(p, vo) ∨ (¬binding(p, d, r, cr) ∨



¬issued By(cr, vo)) ∨ ¬assigned(p, t) ∨ ¬requires(t, d)))

This anti-subgoal expresses a hacking attack in which the
principal is authorised to access the data even though it has
no VO rights credential. More specifically, it is possible to
get the following two instances of the anti-subgoal for the
cases of confidentiality and integrity breaches:

AntiGoal [Confidentiality Breach]
FormalDef ∃p ∈ Principal, d ∈ Data, r ∈

Right,∀cr ∈ Credential, vo ∈ VO, t ∈
Task : ♦ (authorised(p, d, read) ∧ (¬owner(p, d)) ∧
(¬member(p, vo) ∨ (¬binding(p, d, read, cr) ∨
¬issued By(cr, vo)) ∨ ¬assigned(p, t) ∨ ¬requires(t, d)))

AntiGoal [Integrity Breach]
FormalDef ∃p ∈ Principal, d ∈ Data, r ∈

Right,∀cr ∈ Credential, vo ∈ VO, t ∈
Task : ♦ (authorised(p, d, write) ∧ (¬owner(p, d)) ∧
(¬member(p, vo) ∨ (¬binding(p, d, write, cr) ∨
¬issued By(cr, vo)) ∨ ¬assigned(p, t) ∨ ¬requires(t, d)))

4.3 Discussion on the Authorisation
Model

Essentially, the authorisation goal model captures both
the data storage confidentiality and integrity properties by
generalising the access rights to those data. The distinction
between read/write access rights is only significant in the
case of VO members who do not qualify as owners of the
data; owners are automatically assumed to have both rights.
The model also captures liveness properties in the sense that
authorisation must be granted if ownership or valid mem-
bership are established. The domain-specific definitions of
the various ownership and valid membership predicates al-
low us to talk about concrete implementations of these pred-
icates, which may introduce more predicates such as the
well-definedness of credentials.

In the anti-goal model, we select a subset of the anti-
goals generated by the negation of the authorisation goal,
which represent breaches in confidentiality and integrity.
The use of domain-specific definitions again in the anti-goal
model reveals a few possible vulnerabilities that may arise
later in the implementation phase, such as the masquerading
attack and the lack of VO rights vulnerability.

5 Single-Sign On

Single-Sign On (SSO) [5] is a method of access control
that allows the user to authenticate once and gain access
to multiple resources without the need to re-authenticate
again. SSO associates a unique identifier with every user in
a VO or across VOs at authentication time such that changes

made in VO resource configurations are transparent to the
user and such that VO resources have a common identifi-
cation mechanisms for all users. The requirement to have
the SSO method of access control in XtreemOS was identi-
fied in D3.5.2 [14] as R82. The requirement identifies two
main goals required by SSO: users must be authenticated
and users have unique identities.

5.1 A Goal Model for SSO

The SSO goal model is illustrated informally in Figure
3. Next, we introduce a few useful predicates.

• User: The set of Grid users, where User ⊆ Principal.

• ID: The set of user ids.

• authenticated : User× VO → B is a predicate to state
whether a user has been authenticated or not by a VO.

• single id : User × VO → B is a predicate to state
whether a user has a single id or not within a VO.

The formal model is then defined as the following goal,
which introduces the sso : User × VO → B predicate to
denote whether a user enjoys SSO within a VO or not:

Goal [Single-Sign On]
FormalDef ∀u ∈ User, vo ∈ VO :

sso(u, vo) ⇒ (authenticated(u, vo) ∧ single id(u, vo))

The user authentication and single user id predicates are
defined as follows.

Definition [User Authenticated]
FormalDef ∀u ∈ User, vo ∈ VO : authenticated(u, vo) ⇔
(∃cr ∈ Credential :

binding(u, id, owns, cr) ∧ issued By(cr, vo))

Definition [User Has Unique ID]
FormalDef ∀u ∈ User, vo ∈ VO, cr, cr′ ∈

Credential, id, id′ ∈ ID : single id(u, vo) ⇔
(binding(u, id, owns, cr) ∧ binding(u, id′, owns, cr′) ∧
issued By(cr, vo) ∧ issued By(cr′, vo) ⇒ id = id′)

In the first definition, a user is considered to be authen-
ticated in a VO if and only if there is a credential binding
the user to its identity (such as a certificate) and the creden-
tial is issued by the VO. The second definition states that
a user must not have two different identities within a VO,
even though it may have multiple (different) certificates is-
sued by that VO.

5.2 An Anti-Goal Model for SSO

Our anti-goal model is illustrated in Figure 4. As in the
case of authorisation, we define the formal anti-goal model
of SSO by negating the top-level goal:



Figure 3. The Goal Model for SSO.

Figure 4. The Anti-goal Model for SSO.

AntiGoal [Single-Sign On Breach]
FormalDef ♦ (∃u ∈ User, vo ∈ VO : sso(u, vo) ∧
(¬authenticated(u, vo) ∨ ¬single id(u, vo))

Expanding the anti-subgoal along the definitions of the au-
thentication and single user id predicates, we obtain the fol-
lowing two vulnerabilities:

AntiGoal [Lack of User Credential]
FormalDef ♦ (∃u ∈ User, vo ∈ VO : sso(u, vo) ∧ ((∀cr ∈

Credential : ¬binding(u, id, owns, cr)∨¬issued By(cr, vo))∨
¬single id(u, vo))

AntiGoal [User has Multiple IDs]
FormalDef ♦ (∃u ∈ User, vo ∈

VO : sso(u, vo) ∧ (¬authenticated(u, vo) ∨
(binding(u, id, owns, cr) ∧ binding(u, id′, owns, cr′) ∧
issued By(cr, vo) ∧ issued By(cr′, vo) ∧ ¬(id = id′)))

The former represents the case of a user who is capa-
ble of obtaining the SSO capability but that does not have a
valid identity credential issued by the VO. The second how-
ever refers to the case of the user who has managed to obtain
multiple identities but it is still considered to have the SSO
capability. This latter case is dangerous as it may lead an
SSO-based system to assume that there are two users, and
hence leads to a form of non-existent user attack.

5.3 Discussion on the SSO Models

The SSO goal model introduced a domain-specific def-
inition of what it means for the user to be authenticated.
There are other definitions, as such for example the running

of a session of an authentication protocol between the user
and the VO, with the minimum requirement that at the end
of the protocol, the VO authenticates the user. However,
such definitions have more complex formalisations that re-
quire past temporal operators. In the original requirements
documents [14], SSO also requires re-authentication with
the change of identities. We have not included this require-
ment here since it can be expressed as a re-application of
the SSO process.

6 Related Work

There are several frameworks for modelling and
analysing security requirements, such as Misuse Cases [10],
Secure Tropos [4] and UMLsec [6]. Here, we have followed
the Anti-Goals approach proposed in [12]. However, there
are some differences in the way we have applied the anti-
goals methodology. The modelling of security properties
in [12] is based on real-time linear temporal logic extended
with epistemic operators. Our modelling of security prop-
erties is based on pure linear temporal logic only. This has
been sufficient to capture the properties we are interested in
and it has allowed us to exploit current tool support for the
methodology [9]. Further, we have not followed the confi-
dentiality pattern suggested by [12], which is based on epis-
temic operators, but rather adopted a definition based on the
use of credentials.

The work reported here is close in spirit to [7], which
presents a preliminary threat analysis for XtreemOS. It fol-
lows the traditional attack-tree methodology: first, it identi-
fies the main assets within XtreemOS that need protection;



then, it details potential attacks using attacker trees. The
work was informal and was observed the need for a more
rigorous approach, which has motivated to this work

There is a fresh interest in high-level security patterns for
large-scale distributed systems such as Grids [1, 3]. In [1],
it is presented a KAOS pattern for dynamic access control
in Grids –the so-called Chinese Wall policy–. The pattern is
also formalised using linear temporal logic, but it includes
operators for referring to past time that are used for mod-
elling history-based access control. In [3], it is presented
a pattern for secure VO management in Grids. Our work
could be seen as a previous step to the application of such
a pattern, where the full set of KAOS models correspond to
an abstract architecture that could be instatiated with such a
VO management pattern.

7 Conclusion and Future Work

This paper has presented a goal-oriented modelling of
authorisation and single-sign on properties in the XtreemOS
Grid-based operating system. Our approach has consisted
in applying the KAOS goal-oriented methodology, which
formalises goal specification using linear temporal logic.

The use of anti-goals has been central for reasoning
about security goals. They are used in KAOS as a way to
guide the designers to think about security threats, in a sim-
ilar way as engineers elicit safety hazards. With the applica-
tion of anti-goals, we have discovered potential vulnerabili-
ties such as bad management of certificates, and masquerad-
ing attack. These results, in effect, gave insight into the
original security requirements captured in XtreemOS and
helped strengthen those requirements.

As future work, we plan to analyse the usefulness of our
single-sign on model in other Grid systems in order to de-
termine if it could be defined as a pattern for modelling this
important property. Some open issues remains on the ap-
plication of KAOS for security. Although there is notion of
completeness for handling obstacles [13], hence anti-goals,
it is desirable to have a notion of completeness covering all
potential threats to the system. We are also working toward
developing a technique to formally derive test-cases from
the requirements model, which we will apply to the secu-
rity critical components of the XtreemOS architecture.

Acknowledgment

The authors would like to thank Philippe Massonet and
Christophe Ponsard from CETIC for comments on early
drafts of this paper. We are also grateful to the GridTrust
project for facilitating the tool to model the security re-
quirements. The work reported here was partially funded
by the European Commission under grant FP6-033576 to
the XtreemOS project.

References

[1] G. Dallons, P. Massonet, J. F. Molderez, C. Ponsard, and
A. E. Arenas. An Analysis of the Chinese Wall Pattern for
Guaranteeing Confidentiality in Grid-Based Virtual Organ-
isations. In International Workshop on Security, Trust and
Privacy in Grid Systems, Grid-STP 2007. IEEE, 2007.

[2] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,
and P. Traverso. Specifying and Analyzing Early Require-
ments in Tropos. Requirements Eng., 9(2):132–150, 2004.

[3] A. Gaeta, M. Gaeta, I. Djordjevic, A. Smith, T. Dimitrakos,
M. Colombo, and S. Miranda. Design Patterns for Secure
Virtual Organization Management Architecture. In Inter-
national Workshop on Security, Trust and Privacy in Grid
Systems, Grid-STP 2007. IEEE, 2007.

[4] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone.
Requirements Engineering for Trust Management: Model,
Methodology, and Reasoning. Journal of Information Secu-
rity, 5(4):257–274, 2006.

[5] J. Jensen, D. Spence, and M. Viljoen. Grid Single Sign-On
in CCLRC. In Proceedings of the UK e-Science All Hands
Meeting 2006 (AHM2006), Nottingham, UK, Sept. 2006.

[6] J. Jurjens. Secure Systems Development with UML.
Springer-Verlag, 2004.

[7] A. D. Lakhani, E. Yang, B. Matthews, I. Johnson, S. Naqvi,
and G. C. Silaghi. Threat Analysis and Attacks on
XtreemOS: A Grid-Enabled Operating System. In Toward
Next Generation Grids, Proceedings of the CoreGRID Sym-
posium 2007. Springer, 2007.

[8] C. Morin. XtreemOS: A Grid Operating Sytem Mak-
ing your Computer Ready for Participating in Virtual Or-
ganizations. In 10th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC 2007). IEEE, 2007.

[9] C. Ponsard, P. Massonet, J. F. Molderez, A. Rifaut, A. van
Lamsweerde, and H. T. Van. Early Verification and Valida-
tion of Mission Critical Systems. Journal of Formal Meth-
ods in System Design, 30(3), 2007.

[10] G. Sindre and A. L. Opdahl. Eliciting Security Require-
ments with Misuse Cases. Requirements Engineering,
10(1):34–44, 2005.

[11] A. van Lamsweerde. Requirements Engineering in the Year
00: A Research Perspective. In International Conference on
Software Engineering, pages 5–19, 2000.

[12] A. van Lamsweerde. Elaborating Security Requirements
by Construction of Intentional Anti-Models. In 26th ACM-
IEEE International Conference on Software Engineering
(ICSE’04), pages 148–157. IEEE Press, 2004.

[13] A. van Lamsweerde and E. Letier. Handling Obstacles in
Goal-Oriented Requirements Engineering. IEEE Transac-
tions on Software Engineering, 26(10):978–1005, 2000.

[14] XtreemOS. XtreemOS Deliverable D3.5.2: Security Re-
quirements for a Grid-based OS, 2007.


