18,534 research outputs found

    The Star Formation Histories and Efficiencies of Two Giant HII Regions in M33

    Get PDF
    UBVUBV photometry is used to re-identify the OB associations which power the two most luminous HII regions in M33, NGC 604 and NGC 595. There is a significant difference (2-3 Myr) in the ages of the most recent star formation episode in these two regions, while NGC 595 also has undergone a prior episode of star formation (10-15 Myr ago). These data, combined with the presence of molecular clouds in the heart of NGC 604, suggest that molecular clouds may survive at least one intense episode of massive star formation. The star formation efficiencies (mass of stars per mass of gas) of these two HII regions are up to a factor of 3 larger than the average efficiency in the inner disk of M33 or in Galactic molecular clouds, but are still only 2-5\%.Comment: 26 pages including 2 figures, uuencoded compressed postscript file (Figure 1 not available electronically). Accepted to Ap

    Rational Construction of Stochastic Numerical Methods for Molecular Sampling

    Get PDF
    In this article, we focus on the sampling of the configurational Gibbs-Boltzmann distribution, that is, the calculation of averages of functions of the position coordinates of a molecular NN-body system modelled at constant temperature. We show how a formal series expansion of the invariant measure of a Langevin dynamics numerical method can be obtained in a straightforward way using the Baker-Campbell-Hausdorff lemma. We then compare Langevin dynamics integrators in terms of their invariant distributions and demonstrate a superconvergence property (4th order accuracy where only 2nd order would be expected) of one method in the high friction limit; this method, moreover, can be reduced to a simple modification of the Euler-Maruyama method for Brownian dynamics involving a non-Markovian (coloured noise) random process. In the Brownian dynamics case, 2nd order accuracy of the invariant density is achieved. All methods considered are efficient for molecular applications (requiring one force evaluation per timestep) and of a simple form. In fully resolved (long run) molecular dynamics simulations, for our favoured method, we observe up to two orders of magnitude improvement in configurational sampling accuracy for given stepsize with no evident reduction in the size of the largest usable timestep compared to common alternative methods

    Coplanar Circumbinary Debris Disks

    Full text link
    We present resolved Herschel images of circumbinary debris disks in the alpha CrB (HD139006) and beta Tri (HD13161) systems. We find that both disks are consistent with being aligned with the binary orbital planes. Though secular perturbations from the binary can align the disk, in both cases the alignment time at the distances at which the disk is resolved is greater than the stellar age, so we conclude that the coplanarity was primordial. Neither disk can be modelled as a narrow ring, requiring extended radial distributions. To satisfy both the Herschel and mid-IR images of the alpha CrB disk, we construct a model that extends from 1-300AU, whose radial profile is broadly consistent with a picture where planetesimal collisions are excited by secular perturbations from the binary. However, this model is also consistent with stirring by other mechanisms, such as the formation of Pluto-sized objects. The beta Tri disk model extends from 50-400AU. A model with depleted (rather than empty) inner regions also reproduces the observations and is consistent with binary and other stirring mechanisms. As part of the modelling process, we find that the Herschel PACS beam varies by as much as 10% at 70um and a few % at 100um. The 70um variation can therefore hinder image interpretation, particularly for poorly resolved objects. The number of systems in which circumbinary debris disk orientations have been compared with the binary plane is now four. More systems are needed, but a picture in which disks around very close binaries (alpha CrB, beta Tri, and HD 98800, with periods of a few weeks to a year) are aligned, and disks around wider binaries (99 Her, with a 50 yr period) are misaligned, may be emerging. This picture is qualitatively consistent with the expectation that the protoplanetary disks from which the debris emerged are more likely to be aligned if their binaries have shorter periods.Comment: accepted to MNRA

    Discovery of the Fomalhaut C debris disc

    Get PDF
    Fomalhaut is one of the most interesting and well studied nearby stars, hosting at least one planet, a spectacular debris ring, and two distant low-mass stellar companions (TW PsA and LP 876-10, a.k.a. Fomalhaut B & C). We observed both companions with Herschel, and while no disc was detected around the secondary, TW PsA, we have discovered the second debris disc in the Fomalhaut system, around LP 876-10. This detection is only the second case of two debris discs seen in a multiple system, both of which are relatively wide (≳\gtrsim3000 AU for HD 223352/40 and 158 kAU [0.77 pc] for Fomalhaut/LP 876-10). The disc is cool (24K) and relatively bright, with a fractional luminosity Ldisc/L⋆=1.2×10−4L_{\rm disc}/L_\star = 1.2 \times 10^{-4}, and represents the rare observation of a debris disc around an M dwarf. Further work should attempt to find if the presence of two discs in the Fomalhaut system is coincidental, perhaps simply due to the relatively young system age of 440 Myr, or if the stellar components have dynamically interacted and the system is even more complex than it currently appears.Comment: Published in MNRAS Letters. Merry Xma

    On the long-time integration of stochastic gradient systems

    Get PDF
    This article addresses the weak convergence of numerical methods for Brownian dynamics. Typical analyses of numerical methods for stochastic differential equations focus on properties such as the weak order which estimates the asymptotic (stepsize h → 0) convergence behavior of the error of finite time averages. Recently it has been demonstrated, by study of Fokker-Planck operators, that a non-Markovian numerical method [Leimkuhler and Matthews, 2013] generates approximations in the long time limit with higher accuracy order (2nd order) than would be expected from its weak convergence analysis (finite-time averages are 1st order accurate). In this article we describe the transition from the transient to the steady-state regime of this numerical method by estimating the time-dependency of the coefficients in an asymptotic expansion for the weak error, demonstrating that the convergence to 2nd order is exponentially rapid in time. Moreover, we provide numerical tests of the theory, including comparisons of the efficiencies of the Euler-Maruyama method, the popular 2nd order Heun method, and the non-Markovian method

    Heat transfer investigation of Langley Research Center transition models at a Mach number of 8, volume 2

    Get PDF
    The results are presented of a wind tunnel test program to determine aerodynamic heat transfer distributions on delta body and straight body transition models of the space shuttle. Heat transfer rates were determined by the phase-change paint technique on Stycast and RTV models using Tempilag as the surface temperature indicator. The nominal test conditions were: Mach 8, length Reynolds numbers of 5 million and 7.4 million, and angles of attack of 20, 40, and 60 deg. Model details, test conditions, and reduced heat transfer data are included. Data reduction of the phase-change paint photographs was performed by utilizing a new technique
    • 

    corecore