64 research outputs found

    phyr: Anrpackage for phylogenetic species-distribution modelling in ecological communities

    Get PDF
    Model-based approaches are increasingly popular in ecological studies. A good example of this trend is the use of joint species distribution models to ask questions about ecological communities. However, most current applications of model-based methods do not include phylogenies despite the well-known importance of phylogenetic relationships in shaping species distributions and community composition. In part, this is due to a lack of accessible tools allowing ecologists to fit phylogenetic species distribution models easily. To fill this gap, therpackagephyr(pronounced fire) implements a suite of metrics, comparative methods and mixed models that use phylogenies to understand and predict community composition and other ecological and evolutionary phenomena. Thephyrworkhorse functions are implemented in C++ making all calculations and model estimations fast. phyrcan fit a variety of models such as phylogenetic joint-species distribution models, spatiotemporal-phylogenetic autocorrelation models, and phylogenetic trait-based bipartite network models.phyralso estimates phylogenetically independent trait correlations with measurement error to test for adaptive syndromes and performs fast calculations of common alpha and beta phylogenetic diversity metrics. Allphyrmethods are united under Brownian motion or Ornstein-Uhlenbeck models of evolution, and phylogenetic terms are modelled as phylogenetic covariance matrices. The functions and model formula syntax we propose inphyrprovide an easy-to-use collection of tools that we hope will ignite the use of phylogenies to address a variety of ecological questions

    Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems

    Get PDF
    Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities

    Standardized Neon Organismal Data for Biodiversity Research

    Get PDF
    Understanding patterns and drivers of species distribution and abundance, and thus biodiversity, is a core goal of ecology. Despite advances in recent decades, research into these patterns and processes is currently limited by a lack of standardized, high-quality, empirical data that span large spatial scales and long time periods. The NEON fills this gap by providing freely available observational data that are generated during robust and consistent organismal sampling of several sentinel taxonomic groups within 81 sites distributed across the United States and will be collected for at least 30 years. The breadth and scope of these data provide a unique resource for advancing biodiversity research. To maximize the potential of this opportunity, however, it is critical that NEON data be maximally accessible and easily integrated into investigators\u27 workflows and analyses. To facilitate its use for biodiversity research and synthesis, we created a workflow to process and format NEON organismal data into the ecocomDP (ecological community data design pattern) format that were available through the ecocomDP R package; we then provided the standardized data as an R data package (neonDivData). We briefly summarize sampling designs and data wrangling decisions for the major taxonomic groups included in this effort. Our workflows are open-source so the biodiversity community may: add additional taxonomic groups; modify the workflow to produce datasets appropriate for their own analytical needs; and regularly update the data packages as more observations become available. Finally, we provide two simple examples of how the standardized data may be used for biodiversity research. By providing a standardized data package, we hope to enhance the utility of NEON organismal data in advancing biodiversity research and encourage the use of the harmonized ecocomDP data design pattern for community ecology data from other ecological observatory networks

    Disentangling the effects of plant species invasion and urban development on arthropod community composition

    Get PDF
    Urban development and species invasion are two major global threats to biodiversity. These threats often co-occur, as developed areas are more prone to species invasion. However, few empirical studies have tested if both factors affect biodiversity in similar ways. Here we study the individual and combined effects of urban development and plant invasion on the composition of arthropod communities. We assessed 36 paired invaded and non-invaded sample plots, invaded by the plant Antigonon leptopus, with half of these pairs located in natural and the other half in developed land-use types on the Caribbean island of St. Eustatius. We used several taxonomic and functional variables to describe community composition and diversity. Our results show that both urban development and A. leptopus invasion affected community composition, albeit in different ways. Development significantly increased species richness and exponential Shannon diversity, while invasion had no effect on these variables. However, invasion significantly increased arthropod abundance and caused biotic homogenization. Specifically, uninvaded arthropod communities were distinctly different in species composition between developed and natural sites, while they became undistinguishable after A. leptopus invasion. Moreover, functional variables were significantly affected by species invasion, but not by urban development. Invaded communities had higher community-weighted mean body size and the feeding guild composition of invaded arthropod communities was characterized by the exceptional numbers of nectarivores, herbivores, and detritivores. With the exception of species richness and exponential Shannon diversity, invasion influenced four out of six response variables to a greater degree than urban development did. Hence, we can conclude that species invasion is not just a passenger of urban development but also a driver of change

    Standardized NEON organismal data for biodiversity research

    Get PDF
    Understanding patterns and drivers of species distribution and abundance, and thus biodiversity, is a core goal of ecology. Despite advances in recent decades, research into these patterns and processes is currently limited by a lack of standardized, high-quality, empirical data that span large spatial scales and long time periods. The NEON fills this gap by providing freely available observational data that are generated during robust and consistent organismal sampling of several sentinel taxonomic groups within 81 sites distributed across the United States and will be collected for at least 30 years. The breadth and scope of these data provide a unique resource for advancing biodiversity research. To maximize the potential of this opportunity, however, it is critical that NEON data be maximally accessible and easily integrated into investigators\u27 workflows and analyses. To facilitate its use for biodiversity research and synthesis, we created a workflow to process and format NEON organismal data into the ecocomDP (ecological community data design pattern) format that were available through the ecocomDP R package; we then provided the standardized data as an R data package (neonDivData). We briefly summarize sampling designs and data wrangling decisions for the major taxonomic groups included in this effort. Our workflows are open-source so the biodiversity community may: add additional taxonomic groups; modify the workflow to produce datasets appropriate for their own analytical needs; and regularly update the data packages as more observations become available. Finally, we provide two simple examples of how the standardized data may be used for biodiversity research. By providing a standardized data package, we hope to enhance the utility of NEON organismal data in advancing biodiversity research and encourage the use of the harmonized ecocomDP data design pattern for community ecology data from other ecological observatory networks

    A guide to phylogenetic metrics for conservation, community ecology and macroecology

    Get PDF
    The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub-disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub-disciplines hampers potential meta-analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo-diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information.S.B.C. was funded by a postdoctoral grant from Fundac¸ao para a ˜ Ciencia e a Tecnologia (FCT) (SFRH/BPD/74423/2010), ˆ and through the project PTDC/BIA-BIC/118624/2010- FCOMP-01-0124-FEDER-019676, supported by Fonds Europeen de D ´ eveloppement ´ Economique et R ´ egional ´ (FEDER) funds through the Operational Programme for Competitiveness Factors (COMPETE) and by National Funds through FCT. M.R.H. is supported by the Netherlands Organisation for Scientific Research (858.14.040). F.M. received funding from the European Research Council under the European Community’s Seventh Framework Programme FP7/2007-2013 Grant Agreement no. 281422 (TEEMBIO). S.A.F. acknowledges funding by the LOEWE Zentrum AdRIA funding program, of Hesse’s Ministry of Higher Education, Research, and the Arts

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building
    • …
    corecore